Citation: YU He, LI Fa-she, ZHU Xing, WEI Yong-gang, ZHENG Min, WANG Hua, LI Kong-zhai. Monolithic Ce-Fe-Zr-O/MgO oxygen carrier for the chemical-looping partial oxidation of methane to syngas[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 499-506. shu

Monolithic Ce-Fe-Zr-O/MgO oxygen carrier for the chemical-looping partial oxidation of methane to syngas

  • Corresponding author: LI Fa-she,  LI Kong-zhai, 
  • Received Date: 28 October 2014

    Fund Project: 国家自然科学基金(51374004,51174105,51204083) (51374004,51174105,51204083)云南省中青年学术技术带头人后备人才(2014HB006)。 (2014HB006)

  • With MgO as support, powdery Ce-Fe-Zr-O/MgO oxygen carrier was prepared by a ball milling method and monolithic Ce-Fe-Zr-O/MgO oxygen carrier was further obtained by extrusion molding method. The performances of both powdery and monolithic oxygen carriers in partial oxidation of methane to syngas via a chemical looping process were investigated. The results showed that the component of the powdery carrier for oxygen storage is Ce-Fe-Zr-O solid solution, whereas the free oxides of Ce, Zr and Fe may be segregated from the solid solution in monolithic oxygen carrier upon preparation. Two kinds of oxygen species, i.e. surface lattice oxygen and bulk lattice oxygen, can be found on both powdery and monolithic oxygen carriers; bulk lattice oxygen can selectively convert methane to CO and H2, whereas the surface oxygen is very active for methane complete oxidation. Powdery oxygen carrier owns high content of surface lattice oxygen, which results in high concentration of H2O and CO2 in the product. Over the monolithic oxygen carrier, methane can be selectively oxidized to CO and H2 due to the high content of bulk lattice oxygen. Moreover, methane decomposition occurs easily over the powdery oxygen carrier in the redox tests, resulting in a high H2/CO mol ratio (much higher than 2.0) in the product. On the contrary, the monolithic oxygen carrier exhibits a high redox stability and can continuously produce syngas with a H2/CO mol ratio of 2.0 during the successive redox tests.
  • 加载中
    1. [1]

      [1] OTSUKA K, WANG Y, SUNADA E, YAMANAKA I. Direct partial oxidation of methane to synthesis gas by cerium oxide[J]. J Catal, 1998, 175(2):152-160.

    2. [2]

      [2] SHEN S K, LI R J, ZHOU J P, YU C C. Selective oxidation of light hydrocarbons using lattice oxygen instead of molecular oxygen[J]. Chin J Chem Eng, 2003, 11 (6):649-655.

    3. [3]

      [3] LI R J, YU C C, ZHU G R, SHEN S K. Methane oxidation to synthesis gas using lattice oxygen of La1-xSrxMO3-λ (M=Fe, Mn) perovskite oxides instead of molecular oxygen[J]. Pet Sci, 2005, 2(1):19-23.

    4. [4]

      [4] DAI X P, LI R J, YU C C, HAO Z P. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A=La, Nd, Eu) perovskite-type oxides as oxygen storage[J]. J Phys Chem B, 2006, 110(45):22525-22531.

    5. [5]

      [5] OTSUKA K, WANG Y, NAKAMURA M. Direct conversion of methane to synthesis gas through gas-solid reaction using CeO2-ZrO2 solid solution at moderate temperature[J]. Appl Catal A:Gen, 1999, 183(2):317-324.

    6. [6]

      [6] WILKES M F, HAYDEN P, BHATTACHARYA A K. Catalytic studies on ceria lanthana solid solutions I. Oxidation of methane[J]. J Catal, 2003, 219(2):286-294.

    7. [7]

      [7] SADYKOV V A, KUMETSOVA T G, ALIKINA G M, FROLOVA Y V, LUKASHEVICH A L, POTAPOVA Y V, MUZYKANTOV V S, ROGOV V A, KRIVENTSOV V V, KOCHUBEI D I, MOROZ E M, ZYUZIN D I, ZAIKOVSKII V I, KOLOMIICHUK V N, PAUKSTHIS E A, BURGINA E B, ZYRYANOV V V, UVAROV N F, NEOPHYTIDES S, KEMNITZ E. Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen:Synthesis, characterization and performance[J]. Catal Today, 2004, 93-95:45-53.

    8. [8]

      [8] LI K Z, WANG H, WEI Y G, YAN D X. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2-Fe2O3 complex oxides[J]. Chem Eng J, 2010, 156(3):512-518.

    9. [9]

      [9] LI K Z, WANG H, WEI Y G, YAN D X. Syngas production from methane and air via a redox process using Ce-Fe mixed oxides as oxygen carriers[J]. Appl Catal B:Environ, 2010, 97(3/4):361-372.

    10. [10]

      [10] ZHU X, WANG H, WEI Y G, LI K Z, CHENG X M. Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier[J]. J Rare Earths, 2010, 28(6):907-913.

    11. [11]

      [11] LI K Z, WANG H, WEI Y G, YAN D X. Partial oxidation of methane to syngas with air by lattice oxygen transfer over ZrO2-modified Ce-Fe mixed oxides[J]. Chem Eng J, 2011, 173(2):574-582.

    12. [12]

      [12] 张军伟, 黄戒介, 房倚天, 王志青, 余钟亮. 铈修饰铁基复合载氧体用于化学链甲烷部分氧化重整制合成气研究[J]. 燃料化学学报, 2014, 42(2):158-165. (ZHANG Jun-wei, HUANG Jie-jie, FANG Yi-tian, WANG Zhi-qing, YU Zhong-liang. Partial oxidation reforming of methane to synthesis gas by chemical-looping using CeO2-modified Fe2O3 as oxygen carrier[J]. J Fuel Chem Technol, 2014, 42(2):158-165.)

    13. [13]

      [13] CHENG X M, WANG H, WEI Y G, LI K, ZHU X. Preparation and characterization of Ce-Fe-Zr-O(x)/MgO complex oxides for selective oxidation of methane to synthesize gas[J]. J Rare Earths, 2010, 28(S1):316-321.

    14. [14]

      [14] 赵阳, 郑亚锋, 辛峰. 整体式催化剂性能及应用的研究进展[J]. 化学反应工程与工艺, 2004, 20(4):357-362. (ZHAO Yang, ZHENG Ya-feng, XIN Feng. Properties and applications of monolithic catalysts[J]. Chem React Eng Techonl, 2004, 20(4):357-362.)

    15. [15]

      [15] 赵福真, 曾鹏辉, 季生福. CuxCe1-xO2-x/SBA-15/堇青石整体式催化剂及其CO催化氧化性能[J]. 无机化学学报, 2013, 29(4):753-759. (ZHAO Fu-zhen, ZENG Peng-hui, JI Sheng-fu. Preparation, characterization and CO catalytic oxidation performance of CuxCe1-xO2-x/SBA-15/cordierite monolithic catalysts[J]. Chin J Inorg Chem, 2013, 29(4):753-759.)

    16. [16]

      [16] 何俊升, 冯小明. 多孔陶瓷材料的制备技术与研究现状[J]. 铸造技术, 2010, 31(8):1101-1103. (HE Jun-sheng, FENG Xiao-ming. Manufacturing process and research situation of porous ceramic materials[J]. Foundry Technol, 2010, 31(8):1101-1103.)

    17. [17]

      [17] 邹汉波, 陈胜洲, 林维明. Cu1Zr1Ce9Oδ催化剂选择性氧化CO性能的研究[J]. 工业催化, 2008, 16(2):23-27. (ZOU Han-bo, CHEN Sheng-zhou, LIN Wei-ming. Effect of reaction conditions on the performance of Cu1Zr1Ce9Oδ catalyst for selective oxidation of CO[J]. Ind Catal, 2008, 16(2):23-27.)

    18. [18]

      [18] 宴冬霞, 王华, 李孔斋, 魏永刚, 祝星, 程显明. 铈铁锆三元复合氧化物上碳烟的催化燃烧[J]. 燃料化学学报, 2011, 39(3):229-235. (YAN Dong-xia, WANG Hua, LI Kong-zhai, WEI Yong-gang, ZHU Xing, CHENG Xian-ming. Catalytic combustion of soot on Ce-Fe-Zr-O ternary mixed oxide catalysts[J]. J Fuel Chem Technol, 2011, 39(3):229-235.)

    19. [19]

      [19] 魏永刚, 王华, 李孔斋, 祝星, 杜云鹏, 程显明. Ce-Fe-Zr-O(x)/Al2O3氧载体的制备及其选择性氧化甲烷制合成气[J]. 材料导报, 2013, 27(5):74-78. (WEI Yong-gang, WANG Hua, LI Kong-zai, ZHU Xing, DU Yun-peng, CHENG Xian-ming. Preparation and performance of Ce-Fe-Zr-O(x)/Al2O3 oxygen carrier for selective oxidation of mehane to syngas[J]. Mater Rev, 2013, 27(5):74-78.)

    20. [20]

      [20] CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735):713-714.

    21. [21]

      [21] QIAO D S, LU G Z, LIU X H, GUO Y, WANG Y Q, GUO Y L. Preparation of Ce1-xFexO2 solid solution and its catalytic performance for oxidation of CH4 and CO[J]. J Mater Sci, 2011, 46(10):3500-3506.

    22. [22]

      [22] LI H F, LU G Z, WANG Y Q, GUO Y, GUO Y L. Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion[J]. Catal Commun, 2010, 11(11):946-950.

    23. [23]

      [23] TAKENAK S, SERIZAWA M, OTSUKA K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition[J]. J Catal, 2004, 222(2):520-531.

    24. [24]

      [24] LI K Z, WANG H, WEI Y G, YAN D X.Transformation of methane into synthesis gas using the redox property of Ce-Fe mixed oxides:Effect of calcination temperature[J]. Int J Hydrogen Energy, 2011, 36(5):3471-3482.

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    6. [6]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    18. [18]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    19. [19]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(0)
  • Abstract views(353)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return