Citation: HONG Xin, TANG Ke. Preparation of heteroatomic mesoporous Ce-MCM-41 molecular sieve and its performance in the adsorptive removal of dimethyl sulfide[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 456-461. shu

Preparation of heteroatomic mesoporous Ce-MCM-41 molecular sieve and its performance in the adsorptive removal of dimethyl sulfide

  • Corresponding author: TANG Ke, 
  • Received Date: 31 October 2014

    Fund Project: 辽宁省自然科学基金(2014020113) (2014020113)辽宁省高等学校优秀人才支持计划(LJQ2012057) (LJQ2012057)辽宁工业大学教师启动资金(X201311)。 (X201311)

  • Heteroatomic mesoporous Ce-MCM-41 molecular sieve was synthesized by using hydrothermal synthesis method with cetyltrimethy ammonium bromide (CTMABr) as template, cerium chloride as cerium source and sodium silicate as silica source. X-ray diffraction (XRD) and infrared spectrum (FT-IR) results indicate that the well-ordered meso-porous structure was obtained when the Ce/Si molar ratio is less than 0.04; Ce was incorporated into the framework of MCM-41. Nitrogen physisorption measurements indicate that the average pore diameters of MCM-41 and Ce-MCM-41 are 2.82 and 2.46 nm, with pore volumes of 0.762 1 and 0.689 4 m3/g and BET surface areas of 986.42 and 756.8 m2/g, respectively. Dimethyl sulfide with a molecular size of 0.464 8 nm can easily enter the meso-scale pores of MCM-41 and Ce-MCM-41. NH3-TPD results illustrate that the acidity of Ce-MCM-41 is stronger than that of MCM-41. As a result, for the adsorptive removal of dimethyl sulfide from nitrogen with a dimethyl sulfide content of 58 μg/g, the desulfurization capacity of Ce-MCM-41 is 7.52 mg(S)/g, higher than that of MCM-41 (4.57 mg(S)/g). Furthermore, both MCM-41 and Ce-MCM-41 molecular sieves could be easily regenerated after adsorption of dimethyl sulfide; the desulfurization capacity can be recovered up to 80% of the original capacity after regenerated for three times.
  • 加载中
    1. [1]

      [1] MELO D M A, SOUZA J R, MELO M A F, MARTINELLI A E, CACHIMA G H B, CUNHA J D. Evaluation of the zinox and zeolite materials as adsorbents to remove H2S from natural gas[J]. Colloid Surface A, 2006, 272(1/2):32-36.

    2. [2]

      [2] The "Natural gas" have been published and implemented as national standard specifications[J]. China Pet Chem Stand Qual, 2012, (7):7.

    3. [3]

      [3] HONG C, TUM S Q, REESE M A. Removal of sulfur compounds from utility pipelined synthetic natural gas using modified activated carbons[J]. Catal Today, 2009, 139(4):274-279.

    4. [4]

      [4] GORDON I. Results of testing various natural gas desulfurization adsorbents[J]. J Mater Eng Perform, 2004, 13(3):282-286.

    5. [5]

      [5] SATOKAWA S, KOBAYASHI Y, FUJIKI H. Adsorption removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions[J]. Appl Catal B:Environ, 2005, 56(12):51-56.

    6. [6]

      [6] HWANG C L, TAI N H. Removal of dimethylsulfide by adsorption on ion-exchanged zeolites[J]. Appl Catal B:Environ, 2010, 93(34):363-367.

    7. [7]

      [7] ZHANG X D, HU Z H, ZHANG D H. Silver ion modified anionic surfactant templated mesoporous silica adsorption materials for the removal of dimethyl sulfide at ambient temperature[J]. Adv Mater Res, 2012, 512-515:2412-2418.

    8. [8]

      [8] 张晓丹. 负载金属离子的介孔材料吸附脱除甲硫醚[D]. 天津:天津大学,2012. (ZHANG Xiao-dan. Metal ions modified mesoporous materials for the adsorption removal of dimethyl sulfide at ambient temperature[D]. Tianjin:Tianjin University, 2012.)

    9. [9]

      [9] CRESPO D, QI G S, WANG Y H, YANG F H, YANG R T. Superior sorbent for natural gas desulfurization[J]. Ind Eng Chem Res, 2008, 47(4):1238-1244.

    10. [10]

      [10] ARAUJO A S, JARONIEC M. Synthesis and properties of Lanthanide incorporated mesoporous molecular sieves[J]. J Colloid Interf Sci, 1999, 218(2):462-467.

    11. [11]

      [11] ZHAO Q, WANG Q, TANG Y J, JIANG T S, LI C S, YIN H B. Characterization and synthesis of Ce-incorporated mesoporous molecular sieves under microwave irradiation condition[J]. Korean J Chem Eng, 2010, 27(4):1310-1315.

    12. [12]

      [12] 张燕, 李湘祁, 陈琼霞, 汤德平. 微波法合成有序Co-MCM-41介孔分子筛[J]. 化工时刊, 2008, 22(2):12-15. (ZHANG Yan, LI Xiang-qi, CHEN Qiong-xia, TANG De-ping. Microwave synthesis of ordered mesoporous Co-MCM-41[J]. Chem Ind Time, 2008, 22(2):12-15.)

    13. [13]

      [13] 于健强, 李灿, 许磊, 李美俊, 辛勤, 刘中民. 以硅溶胶和三氯化钛为原料合成Ti-MCM-41分子筛Ⅰ.Ti-MCM-41分子筛的合成[J]. 催化学报, 2001, 22(3):267-270. (YU Jian-qiang, LI Can, XU Lei, LI Mei-jun, XIN Qin, LIU Zhong-min. Synthesis of Ti-MCM-41 using colloidal silica and titanium trichloride Ⅰ. Synthesis of Ti-MCM-41 molecular sieve[J]. Chin J Catal, 2001, 22(3):267-270.)

    14. [14]

      [14] 史芸. Ti-MCM-41 分子筛的合成、改性及其催化酯交换反应性能的研究[D]. 天津:天津大学, 2011. (SHI Yun. Synthesis, modification and catalytic performance of Ti-MCM-41 for transesterification[D]. Tianjin:Tianjin University, 2011.)

    15. [15]

      [15] 于健强, 李灿, 许磊, 李美俊, 辛勤, 刘中民. 以硅溶胶和三氯化钛为原料合成 Ti-MCM-41分子筛Ⅱ. Ti-MCM-41分子筛的表征[J]. 催化学报, 2001, 22(4):331-334. (YU Jian-qiang, LI Can, XU Lei, LI Mei-jun, XIN Qin, LIU Zhong-min. Synthesis of Ti-MCM-41 using colloidal silica and titanium trichloride II.Characterization of Ti-MCM-41 molecular sieve[J]. Chin J Catal, 2001, 22(4):331-334.)

    16. [16]

      [16] 赵杉林, 张扬健, 孙桂大, 翟玉春. 钒硅 MCM-41 沸石分子筛微波合成与表征[J]. 燃料化学学报, 1999, 27(2):130-133. (ZHAO Shan-lin, ZHANG Yang-jian, SUN Gui-da, ZHAI Yu-chun. Synthesis of mesoporous molecular sieve VMCM-41 by microwave radiation and its characterization[J]. J Fuel Chem Technol, 1999, 27(2):130-133.)

    17. [17]

      [17] 何锡凤, 宋伟明, 安红. 不同硅铈比 Ce-MCM-41介孔分子筛酸性及结构表征[J]. 化学反应工程与工艺, 2013, 29(2):164-169. (HE Xi-feng, SONG Wei-ming, AN Hong. Acidic and structure characterization of ce-mcm-41 mesoporous molecular sieve with different ratio of silicon to cerium[J]. Chem React Eng Technol, 2013, 29(2):164-169.)

    18. [18]

      [18] ARAUIO A S, AQUINO J M F B, SOUZA M J B, SILVA A O S. Synthesis, characterization and catalytic application of cerium-modified MCM-41[J]. J Solid State Chem, 2003, 171(1/2):371-374.

    19. [19]

      [19] MERRCURI P M, JIVALDO R M, JARONIEC M. Improved thermogravimetric determination of the specific surface area for cerium-incoporated MCM-41 materials[J]. J Alloy Compd, 2002, 344(1/2):190-194.

    20. [20]

      [20] 余谟鑫, 李忠, 夏启斌, 奚红霞. 活性炭表面负载金属离子对其吸附苯并噻吩的影响[J]. 化工学报, 2006, 57(8):1943-1948. (YU Mo-xin, LI Zhong, XIA Qi-bin, XI Hong-xia. Effects of different metal ions loaded onto activated carbon on adsorption of benzothiophene[J]. CIESC J, 2006, 57(8):1943-1948.)

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

Metrics
  • PDF Downloads(0)
  • Abstract views(571)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return