Citation: PAN Chun-xiu, LIU Hua-long, ZHU Wan-wan, LI Hai-ping, LIU Jin-run, WEI Xian-yong, SHUI Heng-fu, WANG Zhi-cai. Characterization of the thermal dissolution products of a subbituminous coal at different temperatures[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 416-421. shu

Characterization of the thermal dissolution products of a subbituminous coal at different temperatures

  • Corresponding author: SHUI Heng-fu, 
  • Received Date: 14 October 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201302) (973计划,2011CB201302)国家自然科学基金(U1261208,21476003,21306001,21176001,51174254) (U1261208,21476003,21306001,21176001,51174254)科技部中日战略合作专项(2013DFG60060) (2013DFG60060)安徽省SRTP项目(201410360160)。 (201410360160)

  • The thermal extracts and residues of Shenfu subbituminous coal (SC) obtained from thermal dissolution in 1-methylnaphthalene (1-MN) at different temperatures were characterized by FT-IR, thermo-gravimetric (TG) analysis, GPC and synchronous fluorescence spectrometry. The results show that the thermal extracts contain more amounts of aliphatic compounds than residues. Almost all of the ash is transferred into the residue. TG analysis shows that there exists a significant difference between SC and its residues. With the thermal dissolution temperature increasing from 300 to 360 ℃, the number-average molecular weight of thermal extract increases; however, it decreases at 380 ℃. The condensed aromatic ring number of thermal extract increases with the thermal dissolution temperature rising. When the thermal dissolution of SC was carried out at temperature below initial pyrolysis temperature of SC, the thermal dissolution is dominated by the solvation of 1-MN with coal to break the non-covalent bonds in SC. The light components such as ketone and ester are easy to be released at this temperature. For thermal dissolution carried out above the initial pyrolysis temperature of SC, the pyrolysis of side chains and bridged bonds in SC and condensation reactions of free radicals take place, resulting in an increase of three-fused ring structure in thermal extract.
  • 加载中
    1. [1]

      [1] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of Hypercoals from coals of various ranks[J]. Fuel, 2008, 87(4/5):592-598.

    2. [2]

      [2] ASHIDA R, NAKAGAWA K, OGA M, NAKAGAWA H, MIURA K. Fractionation of coal by use of high temperature solvent extraction technique and characterization of the fractions[J]. Fuel, 2008, 87(4/5):576-582.

    3. [3]

      [3] ASHIIDA R, MORIMOTO M, MAKINO Y, UMEMOTO S, NAKAGAWA H, MIURA K, SAITO K, KATO K. Fractionation of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009, 88(8):1485-1490.

    4. [4]

      [4] MASSAKI K, YOSHIDA T, LI C, TAKANOHASHI T, SAITO I. The effects of pretreatment and the addition of polar compounds on the production of "HyperCoal" from subbituminous coals[J]. Energy Fuels, 2004, 18(4):995-1000.

    5. [5]

      [5] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I, FUJITA M, MASHIMO K. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy Fuels, 2002, 16(4):1006-1007.

    6. [6]

      [6] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004, 85(8/10):947-967.

    7. [7]

      [7] KIM S D, WOO K J, JEONG S K, RHIM Y J, LEE S H. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone[J]. Korean J Chem Eng, 2008, 25(4):758-763.

    8. [8]

      [8] SHUI H, ZHOU Y, LI H, WANG Z, LEI Z, REN S, PAN C, WANG W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013, 108:385-390.

    9. [9]

      [9] MIURA K, MAE K, HASEGAWA I, CHEN H, KUMANO A, TAMURA K. Estimation of hydrogen bond distributions formed between coal and polar solvents using in situ IR technique[J]. Energy Fuels, 2002, 16(1):23-31.

    10. [10]

      [10] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I, FUJITA M, MASHIMO K. The effect of extraction condition on "HyperCoal" production (1) —under room-temperature filtration[J]. Fuel, 2002, 81(11/12):1463-1469.

    11. [11]

      [11] SHI L, LIU Q, GUO X, WU W, LIU Z. Pyrolysis behaviour and bonding information of coal—A TGA study[J]. Fuel Process Technol, 2013, 108:125-132.

    12. [12]

      [12] 李勇志, 邓先梁, 俞惟乐. 同步荧光光谱法监测按芳环数分离重质油中的芳烃[J]. 燃料化学学报, 1998, 26(3):280-284. (LI Yong-zhi, DENG Xian-liang, YU Wei-le. Application of synchronous fluorescence spectrometry in separation of aromatics by ring number in heavy petroleum fractions[J]. J Fuel Chem Technol, 1998, 26(3):280-284.)

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    3. [3]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    4. [4]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    7. [7]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    10. [10]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(0)
  • Abstract views(541)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return