Citation: WANG Fang, ZENG Xi, WANG Yong-gang, YU Jian, XU Guang-wen. Investigation on in/ex-situ coal char gasification kinetics in a micro fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 393-401. shu

Investigation on in/ex-situ coal char gasification kinetics in a micro fluidized bed reactor

  • Corresponding author: ZENG Xi,  XU Guang-wen, 
  • Received Date: 20 November 2014

    Fund Project: 国家自然科学基金(21306209) (21306209)科技部重大仪器专项(2011YQ120039) (2011YQ120039)中国科学院战略性先导科技专项"低阶煤清洁高效梯级利用关键技术与示范"(XDA07050400)。 (XDA07050400)

  • In-situ char and ex-situ char gasification characteristic was studied by using a newly developed micro fluidized bed reaction analyzer (MFBRA) and the reaction kinetics parameters were obtained. The in-situ char gasification proceeds using the same atmosphere, temperature and reactor in the gasification following the pyrolysis; the ex-situ char 1 gasification is defined as coal pyrolysis in Ar atmosphere and then gasification at hot state in the same reactor; and ex-situ char 2 gasification reaction is defined as coal pyrolysis in Ar atmosphere and then gasification after thermal annealing. By analyzing the three kinds of char, it can be seen that in-situ char has the largest specific surface area, lowest graphitization degree, and strongest sorption ability for CO2. Under the minimized limitations of heat and mass transfer, in-situ char gasification has the highest reaction rate, and lowest reaction energy. The study also proves the reliability of MFBRA for in-situ char gasification reaction.
  • 加载中
    1. [1]

      [1] XIAO R, ZHANG M Y, JIN B S. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed[J]. Energy Fuels, 2006, 20(2):715-720.

    2. [2]

      [2] 任海君, 张永奇, 房倚天, 黄戒介, 汪洋. 褐煤焦中的矿物质对气化动力学的影响[J]. 化学工程, 2010, 38(10):132-135. (REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, HUANG Jie-jie, WANG Yang. Effect of minerals in lignite char on kinetics of steam gasification[J]. Chem Eng, 2010, 38(10):132-135.)

    3. [3]

      [3] 周静, 周志杰, 龚欣, 于遵宏. 煤焦二氧化碳气化动力学研究(I)等温热重法[J]. 煤炭转化, 2002, 25(4):66-69. (ZHOU Jing, ZHOU Zhi-Jie, GONG Xin, YU Zun-hong. Study of char-CO2 gasification:(I) By isothermal thermogravimetry[J]. Coal Convers, 2002, 25(4):66-69.)

    4. [4]

      [4] POOYA L, ZAINAL A Z, ABSUA R M, MAEDEH M. CO2 gasification reactivity of biomass char:Catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresour Technol, 2013, 144:288-295.

    5. [5]

      [5] SUPAPORN S, KUNCHANA B, BOONYARACH K. CO2 gasification of Thai coal chars:Kinetics and reactivity studies[J]. Korean J Chem Eng, 2010, 39(5):46-53.

    6. [6]

      [6] HYO J J, SANG S P, JUNGHO H. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1 100 ℃[J]. Fuel, 2014, 116:465-470.

    7. [7]

      [7] 刘殊远, 汪印, 武荣成, 曾玺, 许光文. 热态半焦和冷态半焦催化裂解煤焦油研究[J]. 燃料化学学报, 2013, 41(9):1041-1049. (LIU Shu-yuan, WANG Yin, WU Rong-cheng, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in-situ chars[J]. J Fuel Chem Technol, 2013, 41(9):1041-1049.)

    8. [8]

      [8] ZENG X, WANG Y, YU J. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011, 25(3):1092-1098.

    9. [9]

      [9] 向银花, 王洋, 张建民, 张守玉, 房倚天, 董众兵. 部分气化焦的水蒸气气化动力学[J]. 化工学报, 2003, 54(3):368-373. (XIANG Yin-hua, WANG Yang, ZHANG Jian-min, ZHANG Shou-yu, FANG Yi-tian, DONG Zhong-bing. Kinetic on steam gasification of partially gasified char[J]. CIESC J, 2003, 54(3):368-373.)

    10. [10]

      [10] 杨小风, 周静, 龚欣, 于遵宏. 煤焦水蒸气气化特性及动力学研究[J]. 煤炭转化, 2003, 26(4):46-50. (YANGXiao-feng, ZHOU Jing, GONG Xin, YU Zun-hong. Kinetic and characteristic study of char-H2O gasification by isothermal thermogravimetry[J]. Coal Convers, 2003, 26(4):46-50.)

    11. [11]

      [11] 张林仙, 黄戒介, 房倚天, 王洋. 中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3):265-269. (ZAHNG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on reactivity of Chinese anthracite chars gasification:Comparison of reactivity between steam and CO2 gasification[J]. J Fuel Chem Technol, 2006, 34(3):265-269.)

    12. [12]

      [12] YU J, YUE J R, XU G W, SUN L X. Kinetics and mechanism of solid reactions in a micro fluidized bed reactor[J]. AIChE J, 2010, 56(11):2905-2912.

    13. [13]

      [13] YU J, ZENG X, ZHANG J W, ZHONG M, ZHANG G Y, WANG Y, XU G W. Isothermal differential characteristics of gas-solid reaction in micro-fluidized bed reactor[J]. Fuel, 2013, 103:29-36.

    14. [14]

      [14] YU J, ZENG X, ZHANG J W, ZHONG M, ZHANG G Y, WANG Y, XU G W. Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed[J]. Sci Techonl, 2013, 47(13):7514-7520.

    15. [15]

      [15] ZENG X, WANG W, WANG Y G, YU J, XU G W. Characterization of char gasification in a micro fluidized bed reaction analyzer[J]. Energy Fuels, 2014, 28(3):1838-1845.

    16. [16]

      [16] ZHAO Z G, ZHANG J W, ZHANG G Y, ZENG X, ZHAO F X, XU G W. Pilot study on jetting pre-oxidation fluidized bed gasification adapting to caking coal[J]. Appl Energy, 2013, 110:276-284.

    17. [17]

      [17] 季颖, 曾玺, 余剑, 岳君容, 李奡明, 许光文. 微型流化床反应分析仪中煤半焦水蒸气气化反应特性[J]. 化工学报, 2014, 65(9):3447-3456. (JI Ying, ZENG Xi, YU Jian, YUE Jun-rong, LI Ao-ming, XU Guang-wen. Steam gasification characteristics of coal char in micro-fluidized bed reaction analyzer[J]. CIESC J, 2014, 65(9):3447-3456.)

    18. [18]

      [18] MOLINA A, MONTAYO A, MONDRAGN F. CO2 strong chemisorption as an estimate of coal char gasification reactivity[J]. Fuel, 1999, 78(8):971-977.

    19. [19]

      [19] XU K, HU S, SU S, XU C F, SUN L S, CHAO S, JIANG L, XIANG J. Study on char surface active sites and their relationship to gasification reactivity[J]. Energy Fuels, 2012, 27(1):118-125.

    20. [20]

      [20] 刘忠锁, 汪琦, 邹宗树, 谭广雷. 非等温热重分析研究碳气化动力学[J]. 材料与冶金学报, 2010, 9(1):68-71. (LIU Zhong-suo, WANG qi, ZOU Zong-shu, TAN Guang-lei. Study on carbon gasification kinetics using non-isothermal thermogravimetric analysis[J]. J Mater Metall, 2010, 9(1):68-71.)

    21. [21]

      [21] GUIZANI C, ESCUDEROSANZ F J, SALVADOR S. Effects of CO2 on biomass fast pyrolysis:Reaction rate, gas yields and char reactive properties[J]. Fuel, 2014, 116:310-320.

    22. [22]

      [22] QIAN L, ZHAO Y J, SUN S Z, CHEN H W, CHEN H, WANG D. Chemical/physical properties of char during devolatilization in inert and reducing conditions[J]. Fuel Process Technol, 2014, 118:327-334.

    23. [23]

      [23] SENNECA O, SALATINO P, MASI S. Heat treatment-induced loss of combustion reactivity of a coalchar:The effect of exposure to oxygen[J]. Exp Therm Fluid Sci, 2004, 28(7):735-741.

    24. [24]

      [24] 李庆钊, 林柏泉, 赵长遂, 武卫芳. 基于傅里叶红外光谱的高温煤焦表面化学结构特性分析[J]. 中国电机工程学报, 2011, 31(32):46-52. (LI Qing-zhao, LIN Bai-quan, ZHAO Chang-sui, WU Wei-fang. Chemical structure analysis of coal char surface based on Fourier-transform infrared spectrometer[J]. Proc CSEE, 2011, 31(32):46-52.)

    25. [25]

      [25] WATANABE H, SHIMOMURA K, OKAZAKI K. Effect of high CO2 concentration on char formation through mineral reaction during biomass pyrolysis[J]. Proc Combust Ins, 2013, 34(2):2339-2345.

    26. [26]

      [26] 罗陨飞, 李文华. 中低变质程度煤显微组分大分子结构的XRD研究[J]. 煤炭学报, 2004, 29(31):338-341. (LUO Yun-fei, LI Wen-hua. X-ray diffraction analysis on the different macerals of several low-to-medium metamorpic grade coals[J]. J China Coal Soc, 2004, 29(31):338-341.)

    27. [27]

      [27] 王丽, 张蓬洲. 煤的RXD的结构分析[J]. 煤炭转化, 1997, 20(1):68-71. (WANG Li, ZHANG Peng-zhou. XRD study of coal structure[J]. Coal Convers, 1997, 20(1):68-71.)

    28. [28]

      [28] MIURA K, HANSHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel, 1989, 68(11):1461-1475.

    29. [29]

      [29] PENG F F, LEE I C, YANG R Y K. Reactivities of in situ and ex situ coal chars during gasification in steam at 1 000-1 400 ℃[J]. Fuel Process Technol, 1995, 41(3):233-251.

    30. [30]

      [30] SADHUKHAN A K, GUPTA P, SAHA R K. Analysis of the dynamics of coal char combustion with Ignition and extinction phenomena:Shrinking core model[J]. Int J Chem Kinet, 2008, 40(9):569-582.

    31. [31]

      [31] ZHANG L X, HUANG J J, FANG Y T, WANG Y. Gasification reactivity and kinetics of typical chinese anthracite chars with steam and CO2[J]. Energy Fuels, 2006, 20(3):1201-1210.

  • 加载中
    1. [1]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(548)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return