Citation: LI Zhong, WANG Li-na, WANG Gui-xue, XIE Guang-wen. Hydrogen generation from the hydrolysis of sodium borohydride solution over the supported Ni-Co-P/CNFs catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 372-378. shu

Hydrogen generation from the hydrolysis of sodium borohydride solution over the supported Ni-Co-P/CNFs catalysts

  • Corresponding author: XIE Guang-wen, 
  • Received Date: 13 August 2014

    Fund Project: 山东省自然科学基金(ZR2011EMM005)。 (ZR2011EMM005)

  • The Ni-Co-P catalysts supported on carbon nanofibers (CNFs) were prepared via electroless deposition; the mass fractions of nickel, cobalt and phosphorus in Ni-Co-P layer are 13.30%, 82.25% and 4.45%, respectively, as determined by ICP-AES. The effects of catalyst amount, sodium borohydride and sodium hydroxide concentrations and reaction temperature on the rate of hydrogen generation in the hydrolysis of alkaline NaBH4 solution were investigated. The results indicated that the rate of hydrogen generation is proportional to the used catalyst amount; a maximum hydrogen generation rate of 18.044 L/(g·min) is achieved at 45 ℃ by hydrolysis of 2.5% NaBH4 solution containing 5% NaOH and 7.5 g/L Ni-Co-P/CNFs catalyst with a Ni-Co-P loading of 18.127%. Moreover, a kinetic study shows that the activation energy for the hydrolysis of alkaline NaBH4 solution under those conditions is 51.57 kJ/mol.
  • 加载中
    1. [1]

      [1] HOFFERT M. Governments must pay for clean-energy innovation[J]. Nature, 2011, 472: 137-137.

    2. [2]

      [2] SCHLAPBACH L, ZVTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414: 353-358.

    3. [3]

      [3] 王威燕, 杨运泉, 罗和安, 彭会左, 张小哲, 胡韬. Ni-Co-W-B非晶态催化剂的制备及其加氢脱氧性能[J]. 催化学报, 2011, 32(10): 1645-1650.(WANG Wei-yan, YANG Yun-quan, LUO He-an, PENG Hui-zuo, ZHANG Xiao-zhe, HU Tao. Preparation and hydrodexy genation properities of Ni-Co-W-B amorphous catalyst[J]. Chin J Catal, 2011, 32(10): 1645-1650.)

    4. [4]

      [4] SANTOS D M F, SEQUEIRA C A C. Sodium borohydride as a fuel for the future[J]. Renew Sust Energy Rev, 2011, 15(8): 3980-4001.

    5. [5]

      [5] 王晓磊, 邓文义, 于伟超, 苏亚欣. 污泥微波高温热解条件下富氢气体生成特征研究[J]. 燃料化学学报, 2013, 41(2): 243-250.(WANG Xiao-lei, DENG Wen-yi, YU Wei-chao, SU Ya-xin. Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge[J]. J Fuel Chem Technol, 2013, 41(2): 243-250.)

    6. [6]

      [6] HUANG Z M, SU A, LIU Y C. Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications[J]. Energy, 2013, 51: 230-236.

    7. [7]

      [7] YU L, MATTHEWS M A. A reactor model for hydrogen generation from sodium borohydride and water vapor[J]. Int J Hydrogen Energy, 2014, 39(8): 3830-3836.

    8. [8]

      [8] JENA P. Materials for hydrogen storage: Past, present, and future[J]. J Phys Chen Lett, 2011, 2(3): 206-211.

    9. [9]

      [9] KWON H J, KIM J, CHO S W, YOO J H, ROH K M, KIM W. The effect of Sc addition on the hydrogen storage capacity of Ti0.32Cr0.43V0.25 alloy[J]. Int J Hydrogen Energy, 2014, 39(20): 10600-10605.

    10. [10]

      [10] ZHAO Y P, DING L Z, ZHONG T S, YUAN H T, JIAO L F. Hydrogen storage behavior of 2LiBH4/MgH2 composites improved by the catalysis of CoNiB nanoparticles[J]. Int J Hydrogen Energy, 2014, 39(21): 11055-11060.

    11. [11]

      [11] ZHU X L, PEI L C, ZHAO Z Y, LIU B Z, HAN S M, WANG R B. The catalysis mechanism of La hydrides on hydrogen storage properties of MgH2 in MgH2 + x wt.% LaH3(x= 0, 10, 20, and 30) composites[J]. J Alloy Compd, 2013, 577: 64-69.

    12. [12]

      [12] LEE J K, ANN H H, YI Y, LEE K W, UHM S, LEE J. A stable Ni-B catalyst in hydrogen generation via NaBH4 hydrolysis[J]. Catal Commun, 2011, 16(1): 120-123.

    13. [13]

      [13] ZHENG X P, ZHENG J J, MA Q H, LIU S L, XIN F, LIN X B, XIAO G. Study on dehydrogenation properties of the LiAlH4-NH4Cl system[J]. J Alloy Compd, 2013, 551: 508-511.

    14. [14]

      [14] VARIN R A, ZBRONIEC L. Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including long-term storage and moisture effects[J]. J Alloy Compd, 2010, 504(1): 89-101.

    15. [15]

      [15] EASTON D S, SCHNEIBEL J H, SPEAKMAN S A. Factors affecting hydrogen release from lithium alanate (LiAlH4)[J]. J Alloy Compd, 2005, 398(1/2): 245-248.

    16. [16]

      [16] MOHAJERI N, TRAISSI A, ADEBIYI O. Hydrolytic cleavage of ammonia-boranecomplex for hydrogen production[J]. J Power Sources, 2007, 167(2): 482-485.

    17. [17]

      [17] KUMAR R H, KE X Z, ZHANG J Z, LIN Z J, VOGEL S C, HARTL M, SINOGEIKIN S, DAEMEN L, CORNELIUS A L, CHEN C F, ZHAO Y S. Pressure induced structural changes in the potential hydrogen storage compound ammonia borane: A combined X-ray, neutron and theoretical investigation[J]. Chem phys lett, 2010, 495(4/6): 203-207.

    18. [18]

      [18] FIGEN A K, PISKIN M B, COSKUNER B, IMAMOGLU V. Synthesis, structural characterization, and hydrolysis of Ammonia Borane (NH3BH3) as a hydrogen storage carrier[J]. Int J Hydrogen Energy, 2013, 38(36): 16215-16228.

    19. [19]

      [19] WU C, BAI Y, LIU D X, WU F, PANG M L, YI B L. Ni-Co-B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells[J]. Catal Today, 2011, 170(1): 33-39.

    20. [20]

      [20] WU C, BAI Y, WU F, YI B L, ZHANG H M. Highly active cobalt-based catalysts in situ prepared from CoX2 (X = Cl-, NO3-) and used for promoting hydrogen generation from NaBH4 solution[J]. Int J Hydrogen Energy, 2010, 35(7): 2675-2679.

    21. [21]

      [21] XU D Y, ZHANG H M, YE W. Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst[J]. Catal Commun, 2007, 8(11): 1767-1771.

    22. [22]

      [22] DCMIRCI U B, GARN F. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate[J]. J Alloy Compd, 2008, 463(1/2): 107-111.

    23. [23]

      [23] ALONSO R P, SICURELLI A, CALLONE E, GARTURAN G, RAJ R. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells[J]. J Power Sources, 2007, 165(1): 315-323.

    24. [24]

      [24] BAYDAROGLU F, ÖZDEMIR E, HASIMOGLU A. An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4[J]. Int J Hydrogen Energy, 2014, 39(3): 1516-1522.

    25. [25]

      [25] OCON J D, TUAN T N, YI Y, LEON R L, LEE J K, LEE J. Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles[J]. J Power Sources, 2013, 243: 444-450.

    26. [26]

      [26] ZHANG X W, ZHAO J Z, CHENG F Y, LIANG J, TAO Z L, CHEN J. Electroless-deposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution[J]. Int J Hydrogen Energy, 2010, 35(15): 8363-8369.

    27. [27]

      [27] DAI H B, LIANG Y, WANG P, YAO X D, RUFFORD T, LU M, CHENG H M. High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride sodium[J]. Int J Hydrogen Energy, 2008, 33(16): 4405-4412.

    28. [28]

      [28] ZHU J, LI R, NIU W L, WU Y J, GOU X L. Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride[J]. J Power Sources, 2012, 211(1): 33-39.

    29. [29]

      [29] LI Z, LI H L, WANG L N, LIU T Y, ZHANG T, WANG G X, XIE G W. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni-Co-P/ γ-Al2O3)[J]. Int J Hydrogen Energy, 2014, 39(27): 14935-14941.

    30. [30]

      [30] KREEVOY M M, JACOBSON R W. The rate of decomposition of NaBH4 in basic aqueous solution[J]. Ventron Alembic, 1979, 15: 2-3.

    31. [31]

      [31] ZHAO J Z, MA H, CHEN J. Improved hydrogen generation from alkaline NaBH4 solution using cabon-supported Co-B as catalysts[J]. Int J Hydrogen Energy, 2007, 32(18): 4711-4716.

    32. [32]

      [32] LIU Z L, GUO B, CHAN S H, TANG E H, HONG L. Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydridesolutions[J]. J Power Sources, 2008, 176(1): 306-311.

    33. [33]

      [33] LIU C H, CHEN B H, HSUEH C L, KU J R, JENG M S, TASU F. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Runanocomposite as catalysts[J]. Int J Hydrogen Energy, 2009, 34(5): 2153-2163.

    34. [34]

      [34] VERNEKAR A A, BUGDE S T, TILVE S. Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydriable Co-Co2B and Ni-Ni3B nanocomposites[J]. Int J Hydrogen Energy, 2012, 37(1): 327-334.

    35. [35]

      [35] GUO Y P, FENG Q H, MA J T. The hydrogen generation from alkaline NaBH4 solution by using electroplated amorphous Co-Ni-P film catalysts[J]. Appl Surf Sci, 2013, 273: 253-256.

    36. [36]

      [36] NIE M, ZOU Y C, HUANG Y M, WANG J Q. Ni-Fe-B catalysts for NaBH4 hydrolysis[J]. Int J Hydrogen Energy, 2012, 37(2): 1568-1576.

    37. [37]

      [37] PATEL N, FERNANDES R, BAZZANELLA N, MIOTELLO A. Enhanced hydrogen production by hydrolysis of NaBH4 using "Co-B nanoparticles supported on carbon film" catalyst synthesized by pulsed laser deposition[J]. Catal Today, 2011, 170(1): 20-26.

    38. [38]

      [38] ZHU J, LI R, NIU W L, WU Y J, GOU X L. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles[J]. Int J Hydrogen Energy, 2013, 38(25): 10864-10870.

    39. [39]

      [39] RAKAP M, KALU E E, ÖZKAR S. Cobalt-nickel-phosphorus supported on Pd-activated TiO2 (Co-Ni-P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydridesolution[J]. J Alloy Compd, 2011, 509(25): 7010-7021.

    40. [40]

      [40] BILEN M, GVRVM, AKANYIRIM. Role of NaCl in NaBH4 production and its hydrolysis[J]. Energy Convers Manage, 2013, 72: 134-140.

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    14. [14]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    20. [20]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

Metrics
  • PDF Downloads(0)
  • Abstract views(369)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return