Citation: ZHANG He, ZHAO Jian-tao, FANG Yi-tian, WANG Yang. Role of activated carbon structures in catalytic oxidation adsorption for mercury[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 360-366. shu

Role of activated carbon structures in catalytic oxidation adsorption for mercury

  • Corresponding author: ZHAO Jian-tao, 
  • Received Date: 13 September 2014

    Fund Project: 国家自然科学基金(20706055) (20706055) 山西省高等学校科技创新项目(2013161)。 (2013161)

  • The Hg0 catalytic oxidation and adsorption capabilities of 3 activated carbons (ACs) and one active coke were evaluated in a simulated coal-derived atmosphere containing hydrogen sulfide (H2S) and oxygen (O2). The examined adsorbent properties that may affect adsorption capacity are pore structure and the presence of sulfur on surface of ACs. N2 isothermal absorption data was treated by BET equation and to calculate the special surface area. The absorption data was settled by HK method to obtain the micro porous structure. The medium pore diameter distribution was calculated by BJH method. The results reveal that with the increasing of micro pore and medium pore volume, Hg0 adsorptive capacity of activated carbons is enhanced. In all cases, Hg0 removal efficiency increases with sulfur addition.
  • 加载中
    1. [1]

      [1] 王起超, 沈文国, 麻壮伟. 中国燃煤汞排放量估算[J]. 中国环境科学, 1999, 19(4): 318-321.(WANG Qi-chao, SHEN Wen-guo, MA Zhuang-wei. The estimation of mercury emission from coal combustion in China[J]. Chin Environ Sci, 1999, 19(4): 318-321.)

    2. [2]

      [2] 张明泉, 朱元成, 邓汝温. 中国燃煤大气排放汞量的估算与评述[J]. AMBIO-人类环境杂志, 2002, 31(6): 482-484.(ZHANG Ming-quan, ZHU Yuan-cheng, DENG Ru-weng. Evaluation of mercury emissions to the atmosphere from coal combustion, China[J]. AMBIO-A J Human Environ, 2002, 31(6): 482-484.)

    3. [3]

      [3] UDDIN M A, OZAKI M, SASAOKA E, WU S J. Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas[J]. Energy Fuels, 2009, 23(10): 4710-4716.

    4. [4]

      [4] MAROTO V, ZHANG Y, GRANITE E. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample[J]. Fuel, 2005, 84(1): 105-108.

    5. [5]

      [5] 任建莉, 周劲松, 骆仲泱, 徐璋, 张雪梅. 钙基类吸附剂脱除烟气中气态汞的试验研究[J]. 燃料化学学报, 2006, 34(5): 557-561.(REN Jian-li, ZHOU Jin-song, LUO Zhong-yang, XU Zhang, ZHANG Xue-mei. Ca-based sorbents for mercury vapor removal from flue gas[J]. J Fuel Chem Technol, 2006, 34(5): 557-561.)

    6. [6]

      [6] ZHANG H, ZHAO J, FANG Y T, HUANG J J, WANG Y. Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas[J]. Energy Fuels, 2012, 26(3): 1629-1637.

    7. [7]

      [7] 张郃, 赵建涛, 房倚天, 王洋. 活性炭催化氧化脱除单质汞的研究[J]. 燃料化学学报, 2011, 39(5): 373-377.(ZHANG He, ZHAO Jian-tao, FANG Yi-tian, WANG Yang. Stabilized oxidation and adsorption of elemental mercury by activated carbon[J]. J Fuel Chem Technol, 2011, 39(5): 373-377.)

    8. [8]

      [8] LOPEZ-ANTÓN M A, TASCÓN J M D, MARTÍNEZ-TARAZONZ M R. Retention of mercury in activated carbons in coal combustion and gasification flue gases[J]. Fuel Process Technol, 2002, 77-78: 353-358.

    9. [9]

      [9] WU X X, KERCHER A K, SCHWARTZ V, OVERBURY S H, ARMSTRONG T R. Activated carbons for selective catalytic oxidation of hydrogen sulfide to sulfur[J]. Carbon, 2005, 43(5): 1087-1090.

    10. [10]

      [10] 张郃, 赵建涛, 方惠斌, 房倚天. 活性炭脱除煤气中H2S的气氛影响及动力学研究[J]. 煤炭转化, 2010, 33(3): 23-28.(ZHANG He, ZHAO Jian-tao, FANG Hui-bin, FANG Yi-tian. Atmosphere effect and kinetics of removal of H2S in coal gas with active carbon[J]. Coal Convers, 2010, 33(3): 23-28.)

    11. [11]

      [11] 谭小耀, 吴迪镛, 袁权. 浸渍活性炭脱硫过程中孔结构及气体湿度的影响[J]. 化工学报, 1997, 48(2): 237-240.(TAN Xiao-yao, WU Di-yong, YUAN Quan. Influence of the pore structure and gas humidity on desufurization by impregnated activated carbon[J]. J Chem Ind Eng (China), 1997, 48(2): 237-240.)

    12. [12]

      [12] 邓先伦, 蒋剑春. 除汞载硫活性炭研发[J]. 林产化工通讯, 2004, 38(3): 13-16.(DENG Xian-lun, JIANG Jian-chun. Development of S-loaded activated carbon applied to removal mercury[J]. J Chem Ind Forest Prod, 2004, 38(3): 13-16.)

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    17. [17]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    18. [18]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(1)
  • Abstract views(472)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return