Citation: ZHANG Lu, LIN Rui, HUANG Zhen, FAN Ren-jie. Study on preparation of cobalt-polypyrrole-carbon black supported Pt catalyst and its single cell performance[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 352-359. shu

Study on preparation of cobalt-polypyrrole-carbon black supported Pt catalyst and its single cell performance

  • Corresponding author: LIN Rui, 
  • Received Date: 9 September 2014

    Fund Project: 国家自然科学基金(21276199) (21276199)

  • Cobalt-polypyrrole-carbon black supported Pt catalyst (Pt/Co-PPy-C) was prepared by pulse-microwave assisted chemical reduction and used as a cathode catalyst for oxygen reduction reaction (ORR) in a single cell; the influence of operation temperature and H2/air stoichiometric ratio on the cell performances was investigated, in comparison with the commercial Pt/C catalyst. The results indicated that the cell performs best at 70 ℃ and with a H2/Air ratio of 1.2:2.5. During the 150 h durability test at a galvanostatic operation condition of 600 mA/cm2, the voltage degradation rate with Pt/Co-PPy-C as the cathode catalyst is 0.119 mV/h, about 26% of that with the commercial Pt/C catalyst. The cathode charge transfer impedances before and after durability test are about 7.176 and 8.767 mohm, respectively, much smaller than those with the Pt/C catalyst. The average particle size of Pt in Pt/Co-PPy-C is increased from 2.46 to 3.18 nm, also smaller than that for the Pt/C catalyst. The Pt/Co-PPy-C catalyst exhibits superior performance in ORR and may have an enormous application potential in fuel cell.
  • 加载中
    1. [1]

      [1] SHIRAKAWA H, LOUIS E J, MACDIARMID A G, CHIANG C K, HEEGER A J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x[J]. J Chem Soc-Chem Commun, 1977 (16): 578-580.

    2. [2]

      [2] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣, 徐景坤. 导电聚合物/贵金属复合材料应用于Cl小分子电催化氧化[J]. 化学进展, 2012, 24(9): 1818-1836.(REN Fang-fang, JIANG Feng-xing, ZHOU Wei-qiang, DU Yu-kou, XU Jing-kun. Application of conducting polymers/metal composites for Cl molecules electrooxidation[J]. Prog Chem, 2012, 24(9): 1818-1836.)

    3. [3]

      [3] HYUN K, LEE J H, YOON C W, CHO Y H, KIM L H, KWON Y. Improvement in oxygen reduction activity of polypyrrole-coated PtNi alloy catalyst prepared for proton exchange membrane fuel cells[J]. Synth Met, 2014, 190(4): 48-55.

    4. [4]

      [4] SELVARAJ V, ALAGAR M, KUMAR K S. Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications[J]. Appl Catal B: Environ, 2007, 75(1): 129-138.

    5. [5]

      [5] HAMMACHE H, MAKHLOUFI L, SAIDANI B. Electrocatalytic oxidation of methanol on PPy electrode modified by gold using the cementation process[J]. Synth Met, 2001, 123(3): 515-522.

    6. [6]

      [6] 刘佳佳, 邬冰, 高颖. 聚吡咯-碳载Pd 催化剂的制备及对甲酸的电催化氧化[J]. 化学学报, 2012, 70(16): 1743-1747.(LIU Jia-jia, WU Bing, GAO Yin. Preparation of polypyrrole-carbon black supported Pd Catalyst for formic acid electrooxidation[J]. Acta Chim Sin, 2012, 70(16): 1743-1747.)

    7. [7]

      [7] SIGAUD M, LI M, CHARDON-NOBLAT S, AIRES F J C S, SOLDO-OLIVIER Y, SIMON J P, RENOUPREZ A, DERONZIER A. Electrochemical preparation of nanometer sized noble metal particles into a polypyrrole functionalized by a molecular electrocatalyst precursor[J]. J Mater Chem, 2004, 14(17): 2606-2608.

    8. [8]

      [8] TRUEBA M, TRASATTI S P, TRASATTI S. Electrocatalytic activity for hydrogen evolution of polypyrrole films modified with noble metal particles[J]. Mater Chem Phys, 2006, 98(1): 165-171.

    9. [9]

      [9] HUANG S Y, GANESAN P, POPOV B N. Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application[J]. Appl Catal B: Environ, 2009, 93(1): 75-81.

    10. [10]

      [10] JVTTNER K, MANGOLD K M, LANGE M, BOUZEK K. Preparation and properties of composite polypyrrole/Pt catalyst systems[J]. Russ J Electrochem, 2004, 40(3): 317-325.

    11. [11]

      [11] STRIKE D J, DE ROOIJ N F, KOUDELKA-HEP M, ULMANN M, AUGUSTYNSKI J. Electrocatalytic oxidation of methanol on platinum microparticles in polypyrrole[J]. J Appl Electrochem, 1992, 22(10): 922-926.

    12. [12]

      [12] WANG J, QIN H, LIU J, LI Z, WANG H, YANG K, LI A, HE Y, YU X. Atomic structure of polypyrrole-modified carbon-supported cobalt catalyst[J]. J Phys Chem, 2012, 116(38): 20225-20229.

    13. [13]

      [13] LEE K, ZHANG L, LUI H, HUI R, SHI Z, ZHANG J. Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts[J]. Electrochim Acta, 2009, 54(20): 4704-4711.

    14. [14]

      [14] QIAO J, XU L, LIU Y, XU P, SHI J, LIU S, TIAN B. Carbon-supported co-pyridine as non-platinum cathode catalyst for alkaline membrane fuel cells[J]. Electrochim Acta, 2013, 96(5): 298-305.

    15. [15]

      [15] DENG L, ZHOU M, LIU C, LIU L, LIU C, DONG S. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells[J]. Talanta, 2010, 81(1): 444-448.

    16. [16]

      [16] MADHU C S, SINGH R N. Preparation and characterization of iron-polypyrrole-carbon composite for use as methanol tolerant cathode material in direct methanol fuel cells[J]. Indian J Chem A, 2013, 52(11): 1383-1390.

    17. [17]

      [17] ZHAO H, LI L, YANG J, ZHANG Y, LI H. Synthesis and characterization of bimetallic Pt-Fe/polypyrrole-carbon catalyst as DMFC anode catalyst[J]. Electrochem Commun, 2008, 10(6): 876-879.

    18. [18]

      [18] BASHYAM R, ZELENAY P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66.

    19. [19]

      [19] 范仁杰, 林瑞, 黄真, 赵天天, 马建新. 新型钴-聚吡咯-碳载Pt 燃料电池催化剂的制备与表征[J]. 物理化学学报, 2014, 30(7): 1259-1266.(FAN Ren-jie, LIN Rui, HUANG Zhen, ZHAO Tian-tian, MA Jian-xin. Preparation and characterization of Pt catalysts supported on cobalt-polypyrrole-carbon for fuel cells[J]. Acta Phys-Chim Sin, 2014, 30(7): 1259-1266.)

    20. [20]

      [20] HAYRE R O, CHA S W, COLLELA W, PRINZ F B. Fuel cell fundamentals[C]. New York: John Wiley and Sons, 2005.

    21. [21]

      [21] DHANUSHKODI S R, KUNDU S, FOWLER M W, PRITZKER M D. Study of the effect of temperature on Pt dissolution in polymer electrolyte membrane fuel cells via accelerated stress tests[J]. J Power Sources, 2014, 245(1): 1035-1045.

    22. [22]

      [22] MENZER R, HOHLEIN B. Analysis of energy and water management in terms of fuel-cell electricity generation[J]. J Power Sources, 1998, 71(1): 294-301.

    23. [23]

      [23] 侯明, 衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2012, 18(1): 1-13.(HOU Ming, YI Bao-lian. Progress and perspective of fuel cell technology[J]. Electrochem, 2012, 18(1): 1-13.)

    24. [24]

      [24] EL-KHAROUF A, CHANDAN A, HATTENBERGER M, POLLET B G. Proton exchange membrane fuel cell degradation and testing: Review[J]. J Energy Inst, 2012, 85(4): 188-200.

    25. [25]

      [25] PRASANNA M, CHO E A, LIM T H, OH I H. Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells[J]. Electrochim Acta, 2008, 53(16): 5434-5441.

    26. [26]

      [26] LI Y, OUYANG J, YANG J. Two doping structures and structural anisotropy revealed by the mass loss and shrinkage of polypyrrole films on alkali treatment[J]. Synth Met, 1995, 74(1): 49-53.

    27. [27]

      [27] SARGIN P S, TOPPARE L, YURTSEVER E. Growth mechanisms of polypyrroles[J]. Polymer, 1996, 37(7): 1151-1155.

    28. [28]

      [28] 张玉晖, 易清风, 刘小平, 向柏霖. 金属掺杂聚吡咯碳化物PPY-M 的制备及其氧还原反应电催化活性[J].无机材料学报, 2014, 29(3): 269-274.(ZHANG Yu-hui, YI Qing-feng, LIU Xiao-ping, XIANG Bo-lin. Carbonizing products of the Fe/Co doped polypyrrole as efficient electrocatalysts for oxygen reduction reaction[J]. J Inorg Mater, 2014, 29(3): 269-274.)

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    19. [19]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(0)
  • Abstract views(409)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return