Citation: RAN Lei, HUA Jin-ming, WEI Ke-mei. Effect of calcination temperature on K modified Ag-Fe/ZnO-ZrO2 catalyst structure and its performance for higher alcohols and DME synthesis from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 323-330. shu

Effect of calcination temperature on K modified Ag-Fe/ZnO-ZrO2 catalyst structure and its performance for higher alcohols and DME synthesis from CO hydrogenation

  • Corresponding author: HUA Jin-ming, 
  • Received Date: 21 October 2014

    Fund Project: 福州大学人才引进项目(0460-022474)。 (0460-022474)

  • A series of K modified Ag-Fe/ZnO-ZrO2 catalysts were prepared by co-precipitation method under different calcination temperatures. The effect of calcination temperature on the catalytic performance for higher alcohols and dimethyl ether(DME) synthesis from CO hydrogenation was investigated. The catalysts were characterized by nitrogen adsorption, XRD, H2-TPR and CO-TPD. The results showed that the catalyst calcined at 250 ℃ could not reach the optimal performance due to insufficient active sites formed at the lower calcination temperature. The catalyst calcined at 300 ℃ exhibited highest CO conversion and higher selectivity of higher alcohols and DME and highest space time yield of higher alcohols and DME reached. As the calcination temperature increased further, the CO conversion decreased, while the selectivity of higher alcohols decreased at first and then increased, the selectivity of DME increased. The catalytic performance of the catalyst was mainly related with its specific surface area, reduction capacity, the dispersion of the σ-AgFeO2 species and CO adsorption-desorption properties. It was proved that the catalyst with larger specific surface area, being easily reduced, higher dispersion of σ-AgFeO2 specie and more CO adsorption active sites, would be helpful for CO hydrogenation conversion. The decrease of the non-dissociative adsorption strength for CO on the surface active sites of the catalyst is favorable for the generation of higher alcohols and DME, while the increase of the dissociative adsorption strength for CO is not favorable for the formation of hydrocarbons.
  • 加载中
    1. [1]

      [1] SURISRTTY V R, DALAI A K, KOZINSKI J. Alcohols as alternative fuels: An overview[J]. Appl Catal A: Gen, 2011, 404(1/2): 1-11.

    2. [2]

      [2] ZHANG L, HUANG Z. Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China[J]. Energy, 2007, 32(10): 1896-1904.

    3. [3]

      [3] 徐慧远, 储伟, 士丽敏, 张辉, 周俊. 射频等离子体技术制备合成低碳醇用铜钴基催化剂[J]. 物理化学学报, 2008, 24(6): 1085-1089.(XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, ZHOU Jun. Preparation of copper-cobalt catalyst by glow discharge plasma for lower alcohol synthesis[J]. Acta Phys-Chem Sin, 2008, 24(6): 1085-1089.)

    4. [4]

      [4] 郭强胜, 毛东森, 俞俊, 韩璐蓬. 不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J]. 燃料化学学报, 2012, 40(9): 1103-1109.(GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012, 40(9): 1103-1109.)

    5. [5]

      [5] 罗彩容, 熊莲, 郭海军, 丁飞, 陈新德, 陈勇. 碱金属对CO加氢制备低碳醇Cu-Fe-Co基催化剂的影响[J]. 高校化学工程学报, 2012, 26(5): 823-828.(LUO Cai-rong, XIONG Lian, GUO Hai-jun, DING Fei, CHEN Xin-de, CHEN Yong. Effect of alkali metal addition on Cu-Fe-Co based catalyst for lower alcohols synthesis by CO hydrogenation[J]. J Chem Eng Chin Univ, 2012, 26(5): 823-828.)

    6. [6]

      [6] XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A: Chem, 2004, 221(1/2): 51-58.

    7. [7]

      [7] XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J]. J Mol Catal A: Chem, 2005, 234(1/2): 75-83.

    8. [8]

      [8] HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A: Gen, 2013, 455: 145-154.

    9. [9]

      [9] JACOBS G, RIBEIRO M C, MA W P, JI Y Y, KHALID S, SUMODJO P T A, DAVIS B H. Group 11 (Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen, 2009, 361(1/2): 137-151.

    10. [10]

      [10] THANI J, JACOBS G, MAW P, WILSON D S, MUTHU K G, GAO P, BOONYARACH K, DAVIS B H, JENNIFER L S K, YEN C H, CRONAUER D C, JEREMY K A, MARSHALL C L. Fischer-Tropsch synthesis: Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles[J]. Appl Catal A: Gen, 2013, 464-465: 165-180.

    11. [11]

      [11] THANI J, JACOBS G, SHAFER W D, PENDYALA V R R, MA W P, GNANAMANI M K, HOPPS S, THOMAS G A, KITIYANAN B, KHALID S, DAVIS B H. Fischer-Tropsch synthesis: TPR and XANES analysis of the impact of simulated regeneration cycles on the reducibility of Co/alumina catalysts with different promoters (Pt, Ru, Re, Ag, Au, Rh, Ir)[J]. Catal Today, 2014, 228: 15-21.

    12. [12]

      [12] CHONCO Z H, FERREIRA A, LODYA L, CLAEYS M, STEEN E V. Comparing silver and copper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound[J]. J Catal, 2013, 307: 283-294.

    13. [13]

      [13] SUGAWA S, SAYAMA K, OKABE K, ARAKAWA H. Methanol synthesis from CO2 and H2 over silver catalyst[J]. Energy Convers, 1995, 36(6/9): 665-668.

    14. [14]

      [14] FROHLICH C, KOPPEL R H, BAIKER A, WOKAUN A. Hydrogenation of carbon dioxide over silver promoted copper-zirconia catalysts[J]. Appl Catal A: Gen, 1993, 106(2): 275-293.

    15. [15]

      [15] BAIKER A, KILO M, MACIEJEWSKI M, MENZI S, WOKAUN A. Hydrogenation of CO2 over copper, silver and gold/zirconia catalysts: Comparative study of catalyst properties and reaction pathways[J]. Stud Surf Sci Catal, 1993, 75: 1257-1272.

    16. [16]

      [16] WOKAUN A, WEIGEL J, KILO M, BAIKER A. Metal/zirconia catalysts for the synthesis of methanol: Characterization by vibrational spectroscopy[J]. Fresenius J Anal Chem, 1994, 349(1/3): 71-75.

    17. [17]

      [17] WEIGEL J, FROHLICH C, BAIKER A, WOKAUN A. Vibrational spectroscopic study of IB metal/zirconia catalysts for the synthesis of methanol[J]. Appl Catal A: Gen, 1996, 140(1): 29-45.

    18. [18]

      [18] KOPPEL R A, STOCKER C, BAIKER A. Copper-and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide[J]. J Catal, 1998, 179(2): 515-527.

    19. [19]

      [19] SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, STOCH J, SKRZPEK J, LACHOWSKA M. Catalytic activity of the M/(3ZnO-ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol[J]. Appl Catal A: Gen, 2004, 278(1): 11-23.

    20. [20]

      [20] 高中正. 实用催化[M]. 北京: 化学工业出版社, 1996, 232.(GAO Zhong-zheng. Practical catalysis[M]. Beijing: Chemical Industry Press, 1996, 232.)

    21. [21]

      [21] 赵宁, 杨成, 魏伟, 王太英, 孙予罕, 张静, 谢亚宁, 胡天斗. 焙烧温度对合成低碳醇用Cu/Mn/Ni/ZrO2催化剂性能的影响[J]. 催化学报, 2002, 23(6): 571-574.(ZHAO Ning, YANG Cheng, WEI Wei, WANG Tai-ying, SUN Yu-han, ZHANG Jing, XIE Ya-ning, HU Tian-dou. Effect of calcination temperature on Cu/Mn/Ni/ZrO2 catalyst for synthesis of higher alcohols[J]. Chin J Catal, 2002, 23(6): 571-574.)

    22. [22]

      [22] 陈敏, 郑小明, 谢玉群. Ag-Fe复合氧化物催化剂上CO的氧化性能[J]. 石油化工, 2000, 29(12): 914-916.(CHEN Min, ZHENG Xiao-ming, XIE Yu-qun. Study of catalytic activity for CO on Ag-Fe composite oxides catalysts[J]. Petrochem Technol, 2000, 29(12): 914-916.)

    23. [23]

      [23] 从昱, 包信和, 张涛, 孙孝英, 梁东白, 田金忠, 黄宁表. 超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J]. 燃料化学学报, 2000, 28(3): 238-243.(CONG Yu, BAO Xin-he, ZHANG Tao, SUN Xiao-ying, LIANG Dong-bai, TIAN Jin-zhong, HUANG Ning-biao. TPSR and TPD studies of ultrafine Cu-ZnO-ZrO2 catalysis for methanol synthesis[J]. J Fuel Chem Technol, 2000, 28(3): 238-243.)

    24. [24]

      [24] MOROOKA Y, OZAKI A. Rugularities in catalytic properties of metal oxides in propylene oxidation[J]. J Catal, 1966, 5(1): 116-124.

    25. [25]

      [25] 陈敏, 罗孟飞, 郑小明. Ag-Fe复合氧化物催化剂的结构及还原性能[J]. 应用化学, 1999, 19(1): 50-53.(CHEN Min, LUO Meng-fei, ZHENG Xiao-ming. Structure and reductive characteristics of Ag-Fe complex oxide catalysts[J]. Chin J Appl Chem, 1999, 19(1): 50-53.)

    26. [26]

      [26] 阮春晓, 陈崇启, 张燕杰, 林性怡, 詹瑛瑛, 郑起. 低温水煤气变换催化剂Cu/ZrO2的制备、表征与性能[J]. 催化学报, 2012, 33(5): 842-849.(RUAN Chun-xiao, CHEN Chong-qi, ZHANG Yan-jie, LIN Xing-yi, ZHAN Ying-ying, ZHENG Qi. Cu/ZrO2 catalyst for low-temperature water-gas shift reaction: Preparation, characterization and performance[J]. Chin J Catal, 2012, 33(5): 842-849.)

    27. [27]

      [27] 叶丽萍, 詹俊荣, 张荣, 孙蕴婕, 李建龙, 吴向阳, 罗勇. CuO-ZnO-ZrO2催化剂的还原性能及其低温CO催化氧化性能[J]. 精细化工, 2012, 29(11): 1066-1071.(YE Li-ping, ZHAN Jun-rong, ZHANG Rong, SUN Yun-jie, LI Jian-long, WU Xiang-yang, LUO Yong. Reducibility of CuO-ZnO-ZrO2 catalyst and its catalytic performance in carbon monoxide oxidation at low temperature[J]. Fine Chem, 2012, 29(11): 1066-1071.)

    28. [28]

      [28] 石秋杰, 杨静, 李包友. Co、Mo掺杂对Ni/ZnO-ZrO2催化剂催化噻吩加氢脱硫性能的影响[J]. 分子催化, 2009, 23(2): 130-134.(SHI Qiu-jie, YANG Jing, LI Bao-you. Effect of Co and Mo dopant on the properties of Ni/ZnO-ZrO2 for hydrodesulfurization of thiophene[J]. J Mol Catal (China), 2009, 23(2): 130-134.)

    29. [29]

      [29] XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L H, FANG K G, LIN M G, SUN Y H. Advances in bifunctionnal catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013, 34(1): 116-129.

    30. [30]

      [30] CHEN C S, CHENG W H, LIN S S. Study of reverse water gas shift reaction by TPD,TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Appl Catal A: Gen, 2003, 238(1): 55-67.

    31. [31]

      [31] CARVALHO N A, PASSOS F B, SCHMAL M. Quantification of metallic area of high dispersed copper on ZSM-5 catalyst by TPD of H2[J]. Catal Commun, 2002, 3(11): 503-509.

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(461)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return