Citation:
RAN Lei, HUA Jin-ming, WEI Ke-mei. Effect of calcination temperature on K modified Ag-Fe/ZnO-ZrO2 catalyst structure and its performance for higher alcohols and DME synthesis from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(3): 323-330.
-
A series of K modified Ag-Fe/ZnO-ZrO2 catalysts were prepared by co-precipitation method under different calcination temperatures. The effect of calcination temperature on the catalytic performance for higher alcohols and dimethyl ether(DME) synthesis from CO hydrogenation was investigated. The catalysts were characterized by nitrogen adsorption, XRD, H2-TPR and CO-TPD. The results showed that the catalyst calcined at 250 ℃ could not reach the optimal performance due to insufficient active sites formed at the lower calcination temperature. The catalyst calcined at 300 ℃ exhibited highest CO conversion and higher selectivity of higher alcohols and DME and highest space time yield of higher alcohols and DME reached. As the calcination temperature increased further, the CO conversion decreased, while the selectivity of higher alcohols decreased at first and then increased, the selectivity of DME increased. The catalytic performance of the catalyst was mainly related with its specific surface area, reduction capacity, the dispersion of the σ-AgFeO2 species and CO adsorption-desorption properties. It was proved that the catalyst with larger specific surface area, being easily reduced, higher dispersion of σ-AgFeO2 specie and more CO adsorption active sites, would be helpful for CO hydrogenation conversion. The decrease of the non-dissociative adsorption strength for CO on the surface active sites of the catalyst is favorable for the generation of higher alcohols and DME, while the increase of the dissociative adsorption strength for CO is not favorable for the formation of hydrocarbons.
-
-
-
[1]
[1] SURISRTTY V R, DALAI A K, KOZINSKI J. Alcohols as alternative fuels: An overview[J]. Appl Catal A: Gen, 2011, 404(1/2): 1-11.
-
[2]
[2] ZHANG L, HUANG Z. Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China[J]. Energy, 2007, 32(10): 1896-1904.
-
[3]
[3] 徐慧远, 储伟, 士丽敏, 张辉, 周俊. 射频等离子体技术制备合成低碳醇用铜钴基催化剂[J]. 物理化学学报, 2008, 24(6): 1085-1089.(XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, ZHOU Jun. Preparation of copper-cobalt catalyst by glow discharge plasma for lower alcohol synthesis[J]. Acta Phys-Chem Sin, 2008, 24(6): 1085-1089.)
-
[4]
[4] 郭强胜, 毛东森, 俞俊, 韩璐蓬. 不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J]. 燃料化学学报, 2012, 40(9): 1103-1109.(GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012, 40(9): 1103-1109.)
-
[5]
[5] 罗彩容, 熊莲, 郭海军, 丁飞, 陈新德, 陈勇. 碱金属对CO加氢制备低碳醇Cu-Fe-Co基催化剂的影响[J]. 高校化学工程学报, 2012, 26(5): 823-828.(LUO Cai-rong, XIONG Lian, GUO Hai-jun, DING Fei, CHEN Xin-de, CHEN Yong. Effect of alkali metal addition on Cu-Fe-Co based catalyst for lower alcohols synthesis by CO hydrogenation[J]. J Chem Eng Chin Univ, 2012, 26(5): 823-828.)
-
[6]
[6] XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A: Chem, 2004, 221(1/2): 51-58.
-
[7]
[7] XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J]. J Mol Catal A: Chem, 2005, 234(1/2): 75-83.
-
[8]
[8] HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A: Gen, 2013, 455: 145-154.
-
[9]
[9] JACOBS G, RIBEIRO M C, MA W P, JI Y Y, KHALID S, SUMODJO P T A, DAVIS B H. Group 11 (Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen, 2009, 361(1/2): 137-151.
-
[10]
[10] THANI J, JACOBS G, MAW P, WILSON D S, MUTHU K G, GAO P, BOONYARACH K, DAVIS B H, JENNIFER L S K, YEN C H, CRONAUER D C, JEREMY K A, MARSHALL C L. Fischer-Tropsch synthesis: Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles[J]. Appl Catal A: Gen, 2013, 464-465: 165-180.
-
[11]
[11] THANI J, JACOBS G, SHAFER W D, PENDYALA V R R, MA W P, GNANAMANI M K, HOPPS S, THOMAS G A, KITIYANAN B, KHALID S, DAVIS B H. Fischer-Tropsch synthesis: TPR and XANES analysis of the impact of simulated regeneration cycles on the reducibility of Co/alumina catalysts with different promoters (Pt, Ru, Re, Ag, Au, Rh, Ir)[J]. Catal Today, 2014, 228: 15-21.
-
[12]
[12] CHONCO Z H, FERREIRA A, LODYA L, CLAEYS M, STEEN E V. Comparing silver and copper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound[J]. J Catal, 2013, 307: 283-294.
-
[13]
[13] SUGAWA S, SAYAMA K, OKABE K, ARAKAWA H. Methanol synthesis from CO2 and H2 over silver catalyst[J]. Energy Convers, 1995, 36(6/9): 665-668.
-
[14]
[14] FROHLICH C, KOPPEL R H, BAIKER A, WOKAUN A. Hydrogenation of carbon dioxide over silver promoted copper-zirconia catalysts[J]. Appl Catal A: Gen, 1993, 106(2): 275-293.
-
[15]
[15] BAIKER A, KILO M, MACIEJEWSKI M, MENZI S, WOKAUN A. Hydrogenation of CO2 over copper, silver and gold/zirconia catalysts: Comparative study of catalyst properties and reaction pathways[J]. Stud Surf Sci Catal, 1993, 75: 1257-1272.
-
[16]
[16] WOKAUN A, WEIGEL J, KILO M, BAIKER A. Metal/zirconia catalysts for the synthesis of methanol: Characterization by vibrational spectroscopy[J]. Fresenius J Anal Chem, 1994, 349(1/3): 71-75.
-
[17]
[17] WEIGEL J, FROHLICH C, BAIKER A, WOKAUN A. Vibrational spectroscopic study of IB metal/zirconia catalysts for the synthesis of methanol[J]. Appl Catal A: Gen, 1996, 140(1): 29-45.
-
[18]
[18] KOPPEL R A, STOCKER C, BAIKER A. Copper-and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide[J]. J Catal, 1998, 179(2): 515-527.
-
[19]
[19] SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, STOCH J, SKRZPEK J, LACHOWSKA M. Catalytic activity of the M/(3ZnO-ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol[J]. Appl Catal A: Gen, 2004, 278(1): 11-23.
-
[20]
[20] 高中正. 实用催化[M]. 北京: 化学工业出版社, 1996, 232.(GAO Zhong-zheng. Practical catalysis[M]. Beijing: Chemical Industry Press, 1996, 232.)
-
[21]
[21] 赵宁, 杨成, 魏伟, 王太英, 孙予罕, 张静, 谢亚宁, 胡天斗. 焙烧温度对合成低碳醇用Cu/Mn/Ni/ZrO2催化剂性能的影响[J]. 催化学报, 2002, 23(6): 571-574.(ZHAO Ning, YANG Cheng, WEI Wei, WANG Tai-ying, SUN Yu-han, ZHANG Jing, XIE Ya-ning, HU Tian-dou. Effect of calcination temperature on Cu/Mn/Ni/ZrO2 catalyst for synthesis of higher alcohols[J]. Chin J Catal, 2002, 23(6): 571-574.)
-
[22]
[22] 陈敏, 郑小明, 谢玉群. Ag-Fe复合氧化物催化剂上CO的氧化性能[J]. 石油化工, 2000, 29(12): 914-916.(CHEN Min, ZHENG Xiao-ming, XIE Yu-qun. Study of catalytic activity for CO on Ag-Fe composite oxides catalysts[J]. Petrochem Technol, 2000, 29(12): 914-916.)
-
[23]
[23] 从昱, 包信和, 张涛, 孙孝英, 梁东白, 田金忠, 黄宁表. 超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J]. 燃料化学学报, 2000, 28(3): 238-243.(CONG Yu, BAO Xin-he, ZHANG Tao, SUN Xiao-ying, LIANG Dong-bai, TIAN Jin-zhong, HUANG Ning-biao. TPSR and TPD studies of ultrafine Cu-ZnO-ZrO2 catalysis for methanol synthesis[J]. J Fuel Chem Technol, 2000, 28(3): 238-243.)
-
[24]
[24] MOROOKA Y, OZAKI A. Rugularities in catalytic properties of metal oxides in propylene oxidation[J]. J Catal, 1966, 5(1): 116-124.
-
[25]
[25] 陈敏, 罗孟飞, 郑小明. Ag-Fe复合氧化物催化剂的结构及还原性能[J]. 应用化学, 1999, 19(1): 50-53.(CHEN Min, LUO Meng-fei, ZHENG Xiao-ming. Structure and reductive characteristics of Ag-Fe complex oxide catalysts[J]. Chin J Appl Chem, 1999, 19(1): 50-53.)
-
[26]
[26] 阮春晓, 陈崇启, 张燕杰, 林性怡, 詹瑛瑛, 郑起. 低温水煤气变换催化剂Cu/ZrO2的制备、表征与性能[J]. 催化学报, 2012, 33(5): 842-849.(RUAN Chun-xiao, CHEN Chong-qi, ZHANG Yan-jie, LIN Xing-yi, ZHAN Ying-ying, ZHENG Qi. Cu/ZrO2 catalyst for low-temperature water-gas shift reaction: Preparation, characterization and performance[J]. Chin J Catal, 2012, 33(5): 842-849.)
-
[27]
[27] 叶丽萍, 詹俊荣, 张荣, 孙蕴婕, 李建龙, 吴向阳, 罗勇. CuO-ZnO-ZrO2催化剂的还原性能及其低温CO催化氧化性能[J]. 精细化工, 2012, 29(11): 1066-1071.(YE Li-ping, ZHAN Jun-rong, ZHANG Rong, SUN Yun-jie, LI Jian-long, WU Xiang-yang, LUO Yong. Reducibility of CuO-ZnO-ZrO2 catalyst and its catalytic performance in carbon monoxide oxidation at low temperature[J]. Fine Chem, 2012, 29(11): 1066-1071.)
-
[28]
[28] 石秋杰, 杨静, 李包友. Co、Mo掺杂对Ni/ZnO-ZrO2催化剂催化噻吩加氢脱硫性能的影响[J]. 分子催化, 2009, 23(2): 130-134.(SHI Qiu-jie, YANG Jing, LI Bao-you. Effect of Co and Mo dopant on the properties of Ni/ZnO-ZrO2 for hydrodesulfurization of thiophene[J]. J Mol Catal (China), 2009, 23(2): 130-134.)
-
[29]
[29] XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L H, FANG K G, LIN M G, SUN Y H. Advances in bifunctionnal catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013, 34(1): 116-129.
-
[30]
[30] CHEN C S, CHENG W H, LIN S S. Study of reverse water gas shift reaction by TPD,TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Appl Catal A: Gen, 2003, 238(1): 55-67.
-
[31]
[31] CARVALHO N A, PASSOS F B, SCHMAL M. Quantification of metallic area of high dispersed copper on ZSM-5 catalyst by TPD of H2[J]. Catal Commun, 2002, 3(11): 503-509.
-
[1]
-
-
-
[1]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[3]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[6]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[7]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[8]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[9]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[10]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[11]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[12]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[13]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[14]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[15]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[16]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[17]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[18]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[19]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[20]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(475)
- HTML views(56)