Citation:
LI Mei-hui, MA Wen-chao, BI Ya-dong, CHEN Guan-yi, CHEN Hui. Catalytic co-cracking of reduced pressure distillation of bio-oil and ethanol over ZSM-5/MCM-41[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(3): 309-314.
-
The reduced pressure distillation of bio-oil and the ethanol with the mixing ratio of 2:3 by weight were subjected to catalytic co-cracking over ZSM-5/MCM-41 molecular sieve in a fixed-bed reactor. The effects of reaction temperature and WHSV on cracking products were investigated. The catalyst is characterized by NH3-TPD, BET, N2 adsorption and desorption. The gaseous products were analyzed by gas chromatograph, and reduced pressure distillation of bio-oil and the upgraded bio-oil were quantified by gas chromatograph-mass spectrometry. It is found that the optimum conditions for the upgrading of bio-oil are 500 ℃ of the reaction temperature and 3.75 h-1 of the WHSV, under which the acid substance in upgraded bio-oil is markedly reduced from 25.6% in reduced pressure distillation of bio-oil to 0.1% after upgrading. Meanwhile, the yield of upgraded bio-oil is 46.8%, and the concentration of CO2 and CO in the gaseous products is 9.5%.
-
Keywords:
- bio-oil,
- ZSM-5/MCM-41,
- catalytic co-cracking,
- upgrading
-
-
-
[1]
[1] 杨中志. 木屑加压液化与液体产物分级制备燃料油过程研究[D]. 北京: 中国林业科学研究院, 2013.(YANG Zhong-zhi. Liquefication of sawdust and separation processing of liquefied products for the production of bio-fuels[D]. Beijing: Chinese Academy of Forestry, 2013.)
-
[2]
[2] 李美莲, 柏雪源, 李永军, 高晓凤. 生物质热解气中固体颗粒的分离方法综述[J]. 生物质化学工程, 2012, 46(3): 49-55.(LI Mei-lian, BAI Xue-yuan, LI Yong-jun, GAO Xiao-feng. The separation methods of solid particles in biomass pyrolysis gas[J]. Biomass Chem Eng, 2012, 46(3): 49-55.)
-
[3]
[3] 黄晓露. 木质素模型化合物热解的微观机理研究[D]. 重庆: 重庆大学, 2012.(HUANG Xiao-lu. Studies of molecular level pyrolysis mechanism of lignin model compounds[D]. Chongqing: Chongqing University, 2012.)
-
[4]
[4] ZHOU L Y, YANG H M, WU H, WANG M, CHENG D Q. Catalytic pyrolysis of rice husk by mixing with zincoxide: Characterization of bio-oil and its rheological behavior[J]. Fuel Process Technol, 2013, 106(2): 385-391.
-
[5]
[5] 姜小祥, Naoko Ellis, 仲兆平. 生物油/生物柴油乳化燃料的制备及性质分析[J]. 东南大学学报: 自然科学版, 2010, 40(4): 789-793.(JIANG Xiao-xiang, Naoko Ellis, ZHONG Zhao-ping. Preparing emulsion of bio-oil/bio-diesel and properties analysis[J]. J Southeast Univ (Nat Sci Ed), 2010, 40(4): 789-793.)
-
[6]
[6] 王树荣, 蔡勤杰, 王相宇, 张力, 王誉蓉, 骆仲泱. 生物油酸酮类模化物与乙醇在 HZSM-5 上共裂化制备生物汽油[J]. 催化学报, 2014, 35(5): 709-722.(WANG Shu-rong, CAI Qin-jie, WANG Xiang-yu, ZHANG Li, WANG Yu-rong, LUO Zhong-yang. Biogasoline production by co-cracking of model compound mixture of bio-oil and ethanol over HZSM-5[J]. Chin J Catal, 2014, 35(5): 709-722.)
-
[7]
[7] 朱锡锋. 生物质热解液化技术研究与发展趋势[J]. 新能源进展, 2013, 1(1): 32-37.(ZHU Xi-feng. Research development of biomass fast pyrolysis[J]. Adv New Renew Energy, 2013, 1(1): 32-37.)
-
[8]
[8] 马文超, 陈娇娇, 王铁军, 陈冠益, 马隆龙, 张琦. 生物油模型化合物催化裂解机理[J]. 农业工程学报, 2013, 29(9): 207-213.(MA Wen-chao, CHEN Jiao-jiao, WANG Tie-jun, CHEN Guan-yi, MA Long-long, ZHANG Qi. Catalytic cracking mechanism of bio-oil model compounds[J]. Trans Chin Soc Agric Eng, 2013, 29(9): 207-213.)
-
[9]
[9] 陈娇娇, 陈冠益, 马文超, 马隆龙, 王铁军, 张琦, 吕微. 生物油模型化合物催化裂化制备芳香烃的实验研究[J]. 燃料化学学报, 2013, 41(2): 183-188.(CHEN Jiao-jiao, CHEN Guan-yi, MA Wen-chao, MA Long-long, WANG Tie-jun, ZHANG Qi, LÜ Wei. Experimental study of aromatics production from catalytic cracking of bio-oil model compounds[J]. J Fuel Chem Technol, 2013, 41(2): 183-188.)
-
[10]
[10] 马燕辉, 赵会玲, 唐圣杰, 胡军, 刘洪来. 微孔/介孔复合分子筛的合成及其对CO2的吸附性能[J]. 物理化学学报, 2011, 27(3): 689-696.(MA Yan-hui, ZHAO Hui-ling, TANG Sheng-jie, LIU Hong-lai. Synthesis of micro/mesoporous composites and their application as CO2 adsorbents[J]. Acta Phys-Chim Sin, 2011, 27(3): 689-696.)
-
[11]
[11] 赵彬, 王向宇. 用于氧化反应的改性介孔分子筛 MCM-41 研究进展[J]. 工业催化, 2013, 21(1): 1-5.(ZHAO Bin, WANG Xiang-yu. Advances in modification of mesoporous molecular sieve MCM-41 for oxidation reaction[J]. Ind Catal, 2013, 21(1): 1-5.)
-
[12]
[12] 韩伟, 贾玉心, 熊国兴, 杨维慎. 介孔-微孔复合材料的水热稳定性及其催化裂化性能[J]. 催化学报, 2011, 32(3): 418-427.(HAN Wei, JIA Yu-xin, XIONG Guo-xing, YANG Wei-shen. Hydrothermal stability of meso-microporous composites and their catalytic cracking performance[J]. Chin J Catal, 2011, 32(3): 418-427.)
-
[13]
[13] MORTENSEN P M, GRUNWALDT J D, JENSEN P A, KNUDSEN K G, JENSEN A D. A review of catalytic upgrading of bio-oil to engine fuels[J]. Appl Catal A: Gen, 2011, 407(1): 1-19.
-
[14]
[14] MENTZEL U V, HOLM M S. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5[J]. Appl Catal A: Gen, 2011, 396(1): 59-67.
-
[15]
[15] CHEN G Y, LIU C, MA W C, ZHANG X X, LI Y B, YAN B B, ZHOU W H. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed[J]. Bioresour Technol, 2014, 166(8): 500-507.
-
[16]
[16] WANG S R, CAI Q J, WANG X Y, GUO Z G, LUO Z Y. Bio-gasoline production from co-cracking of hydroxypropanone and ethanol[J]. Fuel Process Technol, 2013, 111(7): 86-93.
-
[17]
[17] 王娜. 生物质热解炭, 气, 油联产实验研究[D]. 天津: 天津大学, 2012.(WANG Na. The experimental study on production of charcoal, bio-gas and bio-oil from biomass pyrolysis[D]. Tianjin: Tianjin University, 2012.)
-
[18]
[18] CHATTANATHAN A S, ADHIKARI S, ABDOULMOUMINE N. A review on current status of hydrogen production from bio-oil[J]. Renew Sust Energy Rev, 2012, 16(5): 2366-2372.
-
[19]
[19] ABU BAKAR M S, TITILOYE J O. Catalytic pyrolysis of rice husk for bio-oil production[J]. J Anal Appl Pyrolysis, 2013, 103(9): 362-368.
-
[20]
[20] WANG S R, GUO Z G, CAI Q J, GUO L. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production[J]. Biomass Bioenergy, 2012, 45(10): 138-143.
-
[21]
[21] 王树荣, 廖艳芬, 刘倩, 骆仲泱, 岑可法. 酸洗预处理对纤维素热裂解的影响研究[J]. 燃料化学学报, 2006, 34(2): 179-183.(WANG Shu-rong, LIAO Yan-fen, LIU Qian, LUO Zhong-yang, CEN Ke-fa. Experimental study of the influence of acid wash on cellulose pyrolysis[J]. J Fuel Chem Technol, 2006, 34(2): 179-183.)
-
[22]
[22] GLINSKI M, KIJENSKI J, JAKUBOWSKI A. Ketones from monocarboxylic acids: Catalytic ketonization over oxidesystems[J]. Appl Catal A: Gen, 1995, 128(2): 209-217.
-
[23]
[23] CRUZ-CABEZA A J, ESQUIVEL D, JIMENEZ-SANCHIDRIAN C, ROMERO-SALGUERO F J. Metal-exchanged β zeolites as catalysts for the conversion of acetone to hydrocarbons[J]. Materials, 2012, 5(1): 121-134.
-
[24]
[24] WANG S R, CAI Q J, WANG X Y, ZHANG L, WANG Y R, LUO Z Y. Biogasoline production from the Co-cracking of the distilled fraction of bio-oil and ethanol[J]. Energy Fuels, 2013, 28(1): 115-122.
-
[25]
[25] 郭祚刚. 基于分子蒸馏技术的生物油分级品位提升研究[D]. 杭州: 浙江大学, 2012.(GUO Zuo-gang. Bio-oil multiple upgrading research based on molecular distillation technology[D]. Hangzhou: Zhejiang University, 2012.)
-
[1]
-
-
-
[1]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[2]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[3]
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
-
[4]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[5]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[6]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[7]
. 第41卷第5期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(5): -.
-
[8]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[9]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[10]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[11]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[12]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[13]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[14]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[15]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[16]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[17]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[18]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[19]
Siran Wang , Yinuo Wang , Yilong Zhao , Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033
-
[20]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(597)
- HTML views(18)