Citation:
XU Xiu-qiang, WANG Yong-gang, ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, HE Xin. Evolution behavior of reactivity and microstructure of lignite char during in-situ gasification with steam[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(3): 273-280.
-
The pyrolysis of brown coal and the in-situ gasification of "hot" char were carried out in a newly-designed two-stage fixed-bed reactor. Firstly, the brown coal was pyrolyzed in ultrapure argon for 5 s under the temperature of 400 ℃, 600 ℃, and 800 ℃ at the pyrolysis stage. Then the reactor was shifted to the "gasification stage" immediately and the "hot char" obtained at the pyrolysis stage was gasified in-situ for 2~30 min at 900 ℃ with a 15%H2O balanced with argon to obtain a so-called in-situ gasification char. TGA and Raman spectroscope were used to characterize the reactivity and microstructure of char, respectively. Results show that the yields of in-situ gasification char decrease significantly within the initial 10 min, and then decrease slowly with prolonging the holding time further (10~30 min). Plenty of O-containing functional groups are released in the first 2 min during gasification. The ratio of small aromatic ring systems to big aromatic ring systems decreases dramatically within 2 min, and then decreases slowly from 2 min to 30 min. Microstructure of char has an effect on its reactivity. With the char gasification, the amorphous carbon as well as small aromatic ring systems with high activity decreases, leading to the char reactivity decreaseing consequently.
-
-
-
[1]
[1] 邓靖, 李晓红, 喻长连, 冯杰, 李文英. 呼伦贝尔褐煤中低温快速热解实验研究[J]. 武汉大学学报, 2012, 45(6): 729-734.(DENG Jing, LI Xiao-hong, YU Chang-lian, FENG Jie, LI Wen-ying. Experimental study of fast pyrolysis of Hulunbeier lignite at low temperature[J]. Eng J Wuhan Univ, 2012, 45(6): 729-734.)
-
[2]
[2] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13): 1664-1683.
-
[3]
[3] 许慎启, 周志杰, 杨帆, 于广锁, 于遵宏. 快速热解温度下的淮南煤焦与水蒸汽气化反应的研究[J]. 高校化学工程学报, 2008, 22(6): 947-953.(XU Shen-qi, ZHOU Zhi-jie, YANG Fan, YU Guang-suo, YU Zun-hong. Effects of pyrolysis temperature on steam gasification of Huainan char[J]. J Chem Eng Chin Univ, 2008, 22(6): 947-953.)
-
[4]
[4] 唐黎华, 吴勇强, 朱学栋, 朱子彬. 高温下制焦温度对煤焦气化活性的影响[J]. 燃料化学学报, 2002, 30(1): 16-20.(TANG Li-hua, WU Yong-qiang, ZHU Xue-dong, ZHU Zi-bin. Effect of char making temperature on char gasification activity in higher temperature[J]. J Fuel Chem Technol, 2002, 30(1): 16-20.)
-
[5]
[5] 徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东. 煤焦制备条件对其气化反应性的影响[J]. 燃料化学学报, 1996, 24(5): 404-410.(XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Song-ying, WU Dong. Influence of charring conditions of coal chars on their gasification reactivity by air[J]. J Fuel Chem Technol, 1996, 24(5): 404-410.)
-
[6]
[6] 景旭亮, 王志青, 余中亮, 房倚天. 半焦的多循环气化活性及微观结构分析[J]. 燃料化学学报, 2013, 41(8): 917-921.(JING Xu-liang, WANG Zhi-qing, YU Zhong-liang, FANG Yi-tian. Multi-circulated gasification reactivity of coal char and its microstructure analysis[J]. J Fuel Chem Technol, 2013, 41(8): 917-921.)
-
[7]
[7] SENNECA O, SALATINO P, MASI S. Microstructure changes and loss of gasification reactivity of char upon heat treatment[J]. Fuel, 1998, 77(13): 1483-1493.
-
[8]
[8] BO F, SURESH K B, JOHN C B. Structural ordering of coal char during heat treatment and its impact on reativity[J]. Carbon, 2002, 40(4): 482-496.
-
[9]
[9] ATUL S, HAYATO K, TAKASHI K, AKIRA T. Effect of microstructural changes on gasification reactivity of coal chars during low temperature gasification[J]. Energy Fuels, 2002, 16(1): 54-61.
-
[10]
[10] 刘殊远, 汪印, 武荣成, 曾玺, 许光文. 热态半焦和冷态半焦催化裂解煤焦油研究[J]. 燃料化学学报, 2013, 41(9): 1041-1049.(LIU Shu-yuan, WANG Yin, WU Rong-cheng, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in-situ chars[J]. J Fuel Chem Technol, 2013, 41(9): 1041-1049.)
-
[11]
[11] INDREK A, ERIC M S. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel, 1997, 76(6): 475-491.
-
[12]
[12] JIA Q, CHE D F, LIU Y H, LIU Y H. Effect of the cooling and reheating during coal pyrolysis on the conversion from char-N to NO/N2O[J]. Fuel Process Technol, 2009, 90(1): 8-15.
-
[13]
[13] XU X Q, WANG Y G, ZHANG S, CHEN X J, SUN J L. Influence of annealing treatments on char gasification reactivity in steam using Shengli brown coal[C]//2014 Australia-China Symposium on Energy, Shanxi, China, 2014, 65.
-
[14]
[14] TAY H L, KAJITANI S, ZHANG S, LI C Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013, 103(1): 22-28.
-
[15]
[15] LI T T, ZHANG L, DONG L, LI C Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014, 117(1): 1190-1195.
-
[16]
[16] BAYARSAIKHAN B, HAYASHI J I, SHIMADA T, SATHE C, LI C Z, TSUTSUMI A. Kinetics of steam gasification of nascent char from rapid pyrolysis of a Victorian brown coal[J]. Fuel, 2005, 84(12/13): 1612-1621.
-
[17]
[17] 范冬梅. 低阶煤热解半焦的气化反应特性研究[D]. 北京: 中国科学院工程热物理研究所, 2013.(FAN Dong-mei. Characteristics study on pvrolvsis and gasification of low rank coals[D]. Beijing: Institute of Engineering Thermophysics Chinese Academy of Sciences, 2013.)
-
[18]
[18] 林雄超, 王彩红, 田斌, 张书, 周剑林, 王永刚. 脱灰对两种烟煤半焦碳结构及CO2气化反应性的影响[J]. 中国矿业大学学报, 2013, 42(6): 1040-1046.(LIN Xiong-chao, WANG Cai-hong, TIAN Bin, ZHANG Shu, ZHOU Jian-lin, WANG Yong-gang. Effects of de-ashing on the micro-structural transformation and CO2 reactivity of two Chinese bituminous coal chars[J]. J Chin Univ Min Technol, 2013, 42(6): 1040-1046.)
-
[19]
[19] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.
-
[20]
[20] 钟梅, 马凤云. 不同气氛下煤连续热解产物的分配规律及产品品质分析[J]. 燃料化学学报, 2013, 41(12): 1427-1436.(ZHONG Mei, MA Feng-yun. Analysis of product distribution and quality for continuous pyrolysis of coal in different atmspheres[J]. J Fuel Chem Technol, 2013, 41(12): 1427-1436.)
-
[21]
[21] ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010, 101(20): 7935-7943.
-
[22]
[22] PUENTE G, FUENTE E, PIS J J. Reactivity of pyrolysis chars related to precursor coal chemistry[J]. J Anal Appl Pyrolysis, 2000, 53(1): 81-93.
-
[23]
[23] 范晓雷, 周志杰, 王辅臣, 于遵宏. 热解条件对煤焦气化活性影响的研究进展[J]. 煤炭转化, 2005, 28(3): 74-79.(FAN Xiao-Lei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Study on influence of pyrolysis conditions on char gasification reactivity[J]. Coal Convers, 2005, 28(3): 74-79.)
-
[24]
[24] 朱文魁. 煤炭拔头-气化工艺集成的基础研究[D]. 北京: 中国科学院过程工程研究所, 2008.(ZHU Wen-kui. Fundamental research on the integrated process of coal topping and gasification[D]. Beijing: Institute of Process Engineering Chinese Academy of Sciences, 2008.)
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[3]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[4]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[5]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[6]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[7]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[8]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[9]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[10]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[11]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[12]
Yiming Liang , Ziyan Pan , Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016
-
[13]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[14]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[15]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[16]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[17]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[18]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[19]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[20]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(411)
- HTML views(31)