Citation: WEN Hai-tao, KONG Ling-xue, BAI Jin, BAI Zong-qing, LÜ Dong-mei, LI Wen. Transformation of minerals in direct coal liquefaction residue under gasification atmosphere at high temperatures[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 257-265. shu

Transformation of minerals in direct coal liquefaction residue under gasification atmosphere at high temperatures

  • Corresponding author: BAI Jin, 
  • Received Date: 11 October 2014

    Fund Project: 国家自然科学基金(21476247) (21476247) 国家自然科学基金青年基金(21406254) (21406254) 国家自然科学基金委员会与神华集团有限责任公司联合资助项目(U1261209)。 (U1261209)

  • The transformation behavior of mineral matters in direct coal liquefaction residue from Shenhua Corporation under gasification atmosphere at high temperatures was examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Mssbauer spectroscopy was also applied to investigate the iron-bearing minerals and the valence distribution of iron in ash at different temperatures. The results show that the major minerals in coal liquefaction residue are quartz, calcium sulfate, millosevichite, pyrrhotite, kaolinite, and calcite. At high temperatures, they become anorthite, gehlenite, maghemite and magnetite. Due to the formation of anorthite, gehlenite eutectic, ash of coal liquefaction residue exhibits low fusion temperature. The iron-bearing minerals characterized in ash include maghemite, magnetite, fayalite, and the vitreous matter. The content of iron in vitreous matter increases with increasing temperature. Meanwhile, Fe2+/Fe3+ significantly increases from 1.08 to 2.39 as temperature increases from 1 100 to 1 200 ℃ for the reduction of maghemite, and it is not obviously changed above 1 200 ℃. Furthermore, the liquid phase in ash calculated by FactSage increases with temperature owing to the increase of iron in vitreous phase. In hence, high content of iron in ash from coal liquefaction residue is the major reason for its low ash fusion temperatures.
  • 加载中
    1. [1]

      [1] 舒歌平, 史士东, 李克健. 煤炭液化技术[M]. 北京: 煤炭工业出版社, 2003.(SHU Ge-ping, SHI Shi-dong, LI Ke-jian. Coal liquefaction technology[M]. Beijing: China Coal Industry Publishing House, 2003.)

    2. [2]

      [2] 罗万江, 兰新哲, 宋永辉, 付建平. 煤直接液化残渣的利用研究进展[J]. 材料导报A, 2013, 27(6): 153-157.(LUO Wan-jiang, LAN Xin-zhe, SONG Yong-hui, FU Jian-ping. Research progress on utilization of coal liquefaction residue[J]. Mater Rev A, 2013, 27(6): 153-157.)

    3. [3]

      [3] WU X J, ZHOU T, CHEN Y S, ZHANG Z X, PIAO G L, KOBAYASHI N, MORI S, YITAYA Y. Mineral melting behavior of Chinese blended coal ash under gasification condition[J]. Asia-Pac J Chem Eng, 2011, 6(2): 220-230.

    4. [4]

      [4] 芦涛, 张雷, 张晔, 丰芸, 李寒旭. 煤灰中矿物质组成对煤灰熔融温度的影响[J]. 燃料化学学报, 2010, 38(1): 23-28.(LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature[J]. J Fuel Chem Technol, 2010, 38(1): 23-28.)

    5. [5]

      [5] VANDYK J C, MELZER S, SOBIECKI A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and Factsage modeling[J]. Miner Eng, 2006, 19(10): 1126-1135.

    6. [6]

      [6] 白进, 李文, LI Chun-zhu, 白宗庆, 李保庆. 高温下煤中矿物质对气化反应的影响[J]. 燃料化学学报, 2009, 37(2): 134-138.(BAI Jin, LI Wen, LI Chun-zhu, BAI Zong-qing, LI Bao-qing. Influences of mineral matter on high temperature gasification of coal char[J]. J Fuel Chem Technol, 2009, 37(2): 134-138.)

    7. [7]

      [7] MA Z B, BAI J, LI W, BAI Z Q, KONG L X. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 1: Mineral transformation in char[J]. Energy Fuels, 2013, 27(8): 4545-4554.

    8. [8]

      [8] MA Z B, BAI J, BAI Z Q, KONG L X, GUO Z X, YAN J C, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 2: Char gasification[J]. Energy Fuels, 2014, 28(3): 1846-1853.

    9. [9]

      [9] 世史东. 煤加氢液化工程学基础[M]. 北京: 化学工业出版社, 2012.(SHI Shi-dong. The engineering foundation of coal hydro-liquefaction[M]. Beingjing: Chemical Industry Press, 2012.)

    10. [10]

      [10] 于遵宏, 王辅臣. 煤炭气化技术[M]. 北京: 化学工业出版社, 2010.(YU Zun-hong, WANG Fu-chen. Coal gasification technology[M]. Beijing: Chemical Industry Press, 2010.)

    11. [11]

      [11] 杨南如, 夏元复, 陈刚, 刘荣川. 用穆斯堡尔谱效应研究粉煤灰中含铁相[J]. 燃料化学学报, 1984, 12(4): 375-381.(YANG Nan-ru, XIA Yuan-fu, CHEN Gang, LIU Rong-chuan. Mössbauer effect study of iron-bearing phases in pulverized coal ash[J]. J Fuel Chem Technol, 1984, 12(4): 375-381.)

    12. [12]

      [12] 杨南如, 张振桴, 曾燕伟. 用穆斯堡尔效应研究煤灰熔聚物中的含铁相[J]. 燃料化学学报, 1987, 15(1): 67-72.(YANG Nan-ru, ZHANG Zhen-fu, ZENG Yan-wei. Study on the iron-bearing phase in coal ash agglomerates by Mössbauer effect[J]. J Fuel Chem Technol, 1987, 15(1): 67-72.)

    13. [13]

      [13] VUTHALURU H B, EENKHOORN S, HAMBURG G, HEERE P G T, KIEL J H A. Behaviour of iron-bearing minerals in the early stages of pulverised coal conversion processes[J]. Fuel Process Technol, 1998, 56(1/2): 21-31.

    14. [14]

      [14] WAANDERS F B, VINKEN E, MANS A, MULABA-BAFUBIANDI A F. Iron minerals in coal, weathered coal and coal Ash-SEM and Mössbauer results[J]. Hyperfine Interact, 2003, 148/149(1/4): 21-29.

    15. [15]

      [15] 李文, 白进. 煤的灰化学[M]. 北京: 科学出版社, 2013.(LI Wen, BAI Jin. Chemistry of ash from coal[M]. Beinjing: Science Press, 2013.)

    16. [16]

      [16] CHU X J, LI W, LI B Q, CHEN H K. Gasification property of direct coal liquefaction residue with steam[J]. Process Saf Environ Protect, 2006, 84(B6): 440-445.

    17. [17]

      [17] BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4/5): 583-591.

    18. [18]

      [18] 马志斌, 白宗庆, 白进, 李文, 郭振兴. 高温弱还原气氛下高硅铝比煤灰变化行为的研究[J]. 燃料化学学报, 2012, 40(3): 279-285.(MA Zhi-bin, BAI Zong-qing, BAI Jin, LI Wen, GUO Zhen-xing. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2012, 40(3): 279-285.)

    19. [19]

      [19] RAM L C, TRIPATHI P S M, MISHRA S P. Mössbauer spectroscopic studies on the transformations of iron-bearing minerals during combustion of coals: Correlation with fouling and slagging[J]. Fuel Process Technol, 1995, 42(1): 47-60.

    20. [20]

      [20] 夏元复, 刘荣川, 王述新, 许超, 潘素瑛, 程一兵. 高铁硅酸盐玻璃体系的穆斯堡尔研究[J]. 物理学报, 1984, 33(1): 132-136.(XIA Yuan-fu, LIU Rong-chuan, WANG Shu-xin, XU Chao, PAN Su-ying, CHENG Yi-bing. A Mössbauer investigation of the iron-sodium-silicate glass systems[J]. Acta Phys-Chim Sin, 1984, 33(1): 132-136.)

    21. [21]

      [21] 吴新, 卓文钦, 赵长遂. 燃煤飞灰中铁磁性物质及其形成机制[J]. 燃烧科学与技术, 2010, 16(5): 422-429.(WU Xin, ZHUO Wen-xin, ZHAO Chang-sui. Ferromagnetic substance in coal-fired fly ash and its formation mechanism[J]. Process Saf Environ Protect, 2010, 16(5): 422-429.)

    22. [22]

      [22] 尧德中, 俞劲炎, 刘榜华. 应用穆斯堡尔谱(Mössbauer spectroscopy)研究土壤磁性的发生机理[J]. 土壤学报, 1990, 27(4): 361-367.(YAO De-zhong, YU Jin-yan, LIU Bang-hua. The use of Mössbauer spectroscopy in study of soil magnetic genesis[J]. Acta Pedol Sin, 1990, 27(4): 361-367.)

    23. [23]

      [23] LOTTERMOSER W, FORCHER K, AMTHAUER G, FUESS H. Power-and single crystal Mössbauer spectroscopy on synthetic fayalite[J]. Phys Chem Minerals, 1995, 22: 259-267.

    24. [24]

      [24] MYSEN B O, IRGO D. Redox equilibria, structure, and properties of Fe-bearing aluminosilicate melts: Relationships among temperature, composition, and oxygen fugacity in the system Na2O-Al2O3-SiO2-Fe-O[J]. Am Mineral, 1989, 74: 58-76.

    25. [25]

      [25] OWOK J W. Viscosity and structural state of iron in coal ash slag under gasification conditions[J]. Energy Fuels, 1995, 9(3): 534-539.

  • 加载中
    1. [1]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    2. [2]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    3. [3]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    4. [4]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    5. [5]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    6. [6]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    7. [7]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    8. [8]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    9. [9]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    14. [14]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    15. [15]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    16. [16]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    17. [17]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Shukun LePeng WangYuhao LiuMutao XuQuansheng LiuQijie JinJie MiaoChengzhang ZhuHaitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(438)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return