Citation:
ZHOU Yang, HU Xian-chao, LIU Xi-hui, QU Hui-nan, WEN He-rui, YU Chang-lin. Performance of platinum nanoparticles supported on hollow mesoporous tungsten trioxide microsphere as an electrocatalyst for methanol oxidation[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(2): 251-256.
-
Hollow dendritic mesoporous tungsten trioxide (d-WO3) was synthesized by combining the hydrothermal method with the template-sacrificing method; with d-WO3 as a support, Pt/d-WO3 catalyst was prepared through an improved liquid phase reduction method. The Pt/d-WO3 catalyst was characterized by XRD, BET and TEM and its electrocatalytic activity and stability towards methanol electro-oxidation were investigated by cyclic voltammetry and chronoamperometry. The results indicated that d-WO3 exhibits hollow microsphere dendritic structure with a length of 6 μm and a width of 2 μm; Pt nanoparticles with a size of 7.2 nm were highly dispersed on the surface of d-WO3. The nitrogen physisorption on d-WO3 displays type IV isotherms, which are typical for the mesoporous materials. Moreover, d-WO3 shows a BET surface area of 24 m2/g, with a large number of pores around 20~120 nm. The as-prepared Pt/d-WO3 catalyst exhibits higher electrocatalytic activity and better stability in methanol electro-oxidation in comparison with the Pt/WO3 and Pt/C catalysts. The enhanced catalytic performance of Pt/d-WO3 is attributed to its unique hollow mesoporous structure and the double function, which greatly accelerates the dehydrogenation of methanol on Pt.
-
-
-
[1]
[1] YUAN Q B, DUAN D H, MA Y H, WEI G Q, ZhANG Z L, HAO X G, LIU S B. Performance of nano-nickel core wrapped with Pt crystalline thin film for methanol electro-oxidation[J]. J Power Sources, 2014, 245(1): 886-891.
-
[2]
[2] 杨改秀, 李颖, 袁振宏, 孔晓英, 李婷, 陈冠 , 陆天虹, 孙永明. 炭载Pd-P催化剂对甲酸氧化的电催化性能[J]. 燃料化学学报, 2013, 41(11): 1367-1370. (YANG Gai-xiu, LI Ying, YUAN Zhen-hong, KONG Xiao-ying, LI Ting, CHEN Guan-yi, LU Tian-hong, SUN Yong-ming. Electrocatalytic performance of the carbon supported Pd-P catalyst for formic acid oxidation[J]. J Fuel Chem Technol, 2013, 41(11): 1367-1370.)
-
[3]
[3] 王旭红, 袁善美, 朱昱, 倪红军. 碳纤维基PtSn催化剂直接乙醇燃料电池制备及性能研究[J]. 燃料化学学报, 2012, 40(12): 1454-1458. (WANG Xu-hong, YUAN Shan-mei, ZHU Yu, NI Hong-jun. Preparation and performance research of PtSn catalyst supported on carbon fiber for direct ethanol fuel cells [J]. J Fuel Chem Technol, 2012, 40(12): 1454-1458.)
-
[4]
[4] 刘雪楠, 邓超, 高颖, 邬冰. 石墨烯的制备及石墨烯载Pd催化剂对甲酸的电催化氧化[J]. 燃料化学学报, 2014, 42(4): 476-480. (LIU Xue-nan, DENG Chao, GAO Ying, WU Bing. Preparation of graphene and graphene supported Pd catalysts for formic acid electrooxidation[J]. J Fuel Chem and Technol, 2014, 42(4): 476-480.)
-
[5]
[5] CHHINA H S, CAMPBELL H, KESLER O. Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs[J]. J Electrochem Soc, 2007, 154(6): B533-B539.
-
[6]
[6] ZHANG J, TU J P, DU G H, DONG Z M, SU Q M, XIE D, WANG X L. Pt supported self-assembled nest-like-porous WO3 hierarchical microspheres as electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2013, 88(15): 107-111.
-
[7]
[7] CUI X Z, SHI J L, CHEN H R, ZHANG L X, GUO L M, GAO J H, LI J B. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation[J]. J Phys Chem B, 2008, 112(38): 12024-12031.
-
[8]
[8] CHEN D, YE J H. Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties[J]. Adv Funct Mater, 2008, 18(13): 1922-1928.
-
[9]
[9] YANG C Z, VAN DER LAAK N K, CHAN K Y, ZHANG X. Microwave-assisted microemulsion synthesis of carbon supported Pt-WO3 nanoparticles as an electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2012, 75(30): 262-272.
-
[10]
[10] RAJESH B, KARTHIK V, KARTHIKEYAN S, THAMPI K R, BONARD J M, VISWANATHAN B. Pt-WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells[J]. Fuel, 2002, 81(17): 2177-2190.
-
[11]
[11] 刘龙杰, 张艳华, 王爱琴, 张涛. 介孔氧化钨担载Pt催化剂上甘油氢解制备1,3-丙二醇[J]. 催化学报, 2012, 33(8): 1257-1261. (LIU Long-jie, ZHANG Yan-hua, WANG Ai-qin, ZHANG Tao. Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1,3-propanediol[J]. Chin J Catal, 2012, 33(8): 1257-1261.)
-
[12]
[12] LIU B, WANG J, LI H, WU J, ZHOU M, ZUO T. Facile synthesis of hierarchical hollow mesoporous Ag/WO3 spheres with high photocatalytic performance[J]. J Nanosci Nanotechnol, 2013, 13(6): 4117-4122.
-
[13]
[13] JAYARAMAN S, JARAMILLO T F, BAECK S H, MCFARLAND E W. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells[J]. J Phys Chem B, 2005, 109 (48): 22958-22966.
-
[14]
[14] ZHANG H L, HU C G, HE X S, HONG L, DU G J, ZHANG Y. Pt support of multidimensional active sites and radial channels formed by SnO2 flower-like crystals for methanol and ethanol oxidation[J]. J Power Sources, 2011, 196(10): 4499-4505.
-
[15]
[15] FAN Y, LIU J H, LU H T, HUANG P, XU D L. Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2012, 76(1): 475-479.
-
[16]
[16] GUILLEN-VILLAFUERTE O, GARCIA G, RODRIGUEZ J L, PASTOR E, GUIL-LOPEZ R, NIETO E, FIERRO J L G. Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: Influence of the Pt loading and Mo-phase[J]. Int J Hydrogen Energy, 2013, 38(19): 7811-7821.
-
[17]
[17] MU Y Y, LIANG H P, HU J S, JIANG L, WAN L J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. J Phys Chem B, 2005, 109(47): 22212-22216.
-
[18]
[18] SHEN P K, CHEN K Y, TSEUNG A C C. Co oxidation on Pt-Ru/WO3 electrodes[J]. J Electrochem Soc, 1995, 142(6): L85-L86.
-
[19]
[19] SHEN P K, TSEUNG A C C. Anodic-oxidation of methanol on Pt/WO3 in acidic media[J]. J Electrochem Soc, 1994, 141(11): 3082-3090.
-
[20]
[20] PARK K W, AHN K S, NAH Y C, CHOI J H, SUNG Y E. Electrocatalytic enhancement of methanol oxidation at Pt-WOx nanophase electrodes and in-situ observation of hydrogen spillover using electrochromism[J]. J Phys Chem B, 2003, 107(18): 4352-4355.
-
[1]
-
-
-
[1]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[4]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[5]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[6]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[11]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[12]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[13]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[14]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[15]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[16]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[17]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[18]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[19]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[20]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(577)
- HTML views(67)