Citation: ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Influence of calcination temperature on structural property of Mn doped γ-Fe2O3 catalysts and low-temperature SCR activity[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 243-250. shu

Influence of calcination temperature on structural property of Mn doped γ-Fe2O3 catalysts and low-temperature SCR activity

  • Corresponding author: LU Chun-mei, 
  • Received Date: 19 September 2014
    Available Online: 25 November 2014

    Fund Project: 国家自然科学基金(51276101) (51276101) 山东省自然科学基金(ZR2012EEM013) (ZR2012EEM013) 高等学校博士学科点专项科研基金(20120131110022)。 (20120131110022)

  • A series of Mn doped γ-Fe2O3 catalysts(Fe0.7Mn0.3Oz) were prepared with different calcining temperatures via a coprecipitation method, and the influences of calcination temperature on the low-temperature selective catalytic reduction (SCR) activity of Fe0.7Mn0.3Oz catalysts were investigated. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). The results indicate that Fe0.7Mn0.3Oz catalysts calcined at 350 ℃ exhibit the best low-temperature SCR activity, and the NOx conversion reaches above 90% at 70 ℃ and 100% at 100~200 ℃, while the catalysts calcined at 450 ℃ show a poor low-temperature SCR activity. When the calcination temperature is 350 ℃, the catalysts possess the highest specific surface area and pore volume, flourishing pore structure and appropriate γ-Fe2O3 crystallinity. However, when the calcination temperature is increased to 400 or 450 ℃, the sintering takes place and α-Fe2O3 appears in Fe0.7Mn0.3Oz catalysts, which is unfavorable to the low-temperature SCR reaction. Therefore, 350 ℃ is recommended as the optimum calcination temperature for Fe0.7Mn0.3Oz catalysts.
  • 加载中
    1. [1]

      [1] 杨晓燕, 沈伯雄, 马宏卿, 刘亭, 左琛. 前驱物对Mn-Ce/Ti-PILC低温SCR脱硝的影响[J]. 燃料化学学报, 2012, 40(1): 119-123. (YANG Xiao-yan, SHEN Bo-xiong, MA Hong-qing, LIU Ting, ZUO Chen. Study on the effect of Mn-Ce/Ti-PILC on low temperature SCR activity prepared with different precursors[J]. J Fuel Chem Technol, 2012, 40(1): 119-123.)

    2. [2]

      [2] CAO F, XIANG J, SU S, WANG P Y, SUN L S, HU S, LEI S Y. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2014, 243: 347-354.

    3. [3]

      [3] LI J H, CHANG H Z, MA L, HAO J M, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Catal Today, 2011, 175(1): 147-156.

    4. [4]

      [4] QI G S, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441.

    5. [5]

      [5] 张亚平, 汪小蕾, 孙克勤, 沈凯, 徐海涛, 周长城. WO3对MnOx/TiO2低温脱硝SCR催化剂的改性研究[J]. 燃料化学学报, 2011, 39(10): 782-786. (ZHANG Ya-ping, WANG Xiao-lei, SUN Ke-qin, SHEN Kai, XU Hai-tao, ZHOU Chang-cheng. WO3 modification on MnOx/TiO2 low-temperature De-NOx SCR catalyst[J]. J Fuel Chem Technol, 2011, 39(10): 782-786.)

    6. [6]

      [6] CHANG H Z, LI J H, CHEN X Y, MA L, YANG S J, SCHWANK J W, HAO J M. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2[J]. Catal Commun, 2012, 27: 54-57.

    7. [7]

      [7] LIU C X, CHEN L, CHANG H Z, MA L, PENG Y, ARANDIYAN H R, LI J H. Characterization of CeO2-WO3 catalysts prepared by different methods for selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2013, 40: 145-148.

    8. [8]

      [8] WANG C Z, YANG S J, CHANG H Z, PENG Y, LI J H. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3[J]. J Mol Catal A, 2013, 376: 13-21.

    9. [9]

      [9] 陈志航, 李雪辉, 杨青, 李华, 高翔, 江燕斌, 王芙蓉, 王乐夫. 新型铁锰复合氧化物催化低温脱除NOx[J]. 物理化学学报, 2009, 25(4): 601-605. (CHEN Zhi-hang, LI Xue-hui, YANG Qing, LI Hua, GAO Xiang, JIANG Yan-bin, WANG Fu-rong, WANG Le-fu. NOx using novel Fe-Mn mixed-oxide catalysts at low temperature[J]. Acta Phys-Chim Sin, 2009, 25(4): 601-605.)

    10. [10]

      [10] 李雪辉, 李华, 高翔, 陈志航, 杨青, 王芙蓉, 王乐夫. 共沉淀法制备Cr-Mn复合氧化物及其低温催化还原NOx性能[J]. 催化学报, 2011, 32(3): 477-482. (LI Xue-hui, LI Hua, GAO Xiang, CHEN Zhi-hang, YANG Qing, WANG Fu-rong, WANG Le-fu. Preparation of Cr-Mn mixed oxide by coprecipitation and its performance for low-temperature selective catalytic reduction of NOx[J]. Chin J Catal, 2011, 32(3): 477-482.)

    11. [11]

      [11] PAN W G, HONG J N, GUO R T, ZHEN W L, DING H L, JIN Q, DING C G, GUO S Y. Effect of support on the performance of Mn-Cu oxides for low temperature selective catalytic reduction of NO with NH3[J]. J Ind Eng Chem, 2014, 20(4): 2224-2227.

    12. [12]

      [12] 刘福东, 单文坡, 石晓燕, 张长斌, 贺泓. 用于NH3选择性催化还原NO的非钒基催化剂研究进展[J]. 催化学报, 2011, 32(7): 1113-1128. (LIU Fu-dong, SHAN Wen-po, SHI Xiao-yan, ZHANG Chang-bin, HE Hong. Research progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH3[J]. Chin J Catal, 2011, 32(7): 1113-1128.)

    13. [13]

      [13] TENG H, HSU L Y, LAI Y C. Catalytic reduction of NO with NH3 over carbons impregnated with Cu and Fe[J]. Environ Sci Technol, 2001, 35(11): 2369-2374.

    14. [14]

      [14] MARBÁN G, FUERTES A B. Kinetics of the low-temperature selective catalytic reduction of NO with NH3 over activated carbon fiber composite-supported iron oxides[J]. Catal Lett, 2002, 84(1/2): 13-19.

    15. [15]

      [15] LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the stucture and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204.

    16. [16]

      [16] 熊志波. 铁基SCR脱硝催化剂改性研究. 济南: 山东大学, 2013. (XIONG Zhi-bo. Optimizing study on selective catalytic reduction of NOx with NH3 over iron-based catalysts. Jinan: Shandong University, 2013.)

    17. [17]

      [17] 张信莉, 王栋, 陈莲芳, 路春美, 熊志波. Mn掺杂对磁性γ-Fe2O3低温SCR脱硝活性的影响[J]. 工程热物理学报, 2014, 35(5): 995-998. (ZHANG Xin-li, WANG Dong, CHEN Lian-fang, LU Chun-mei, XIONG Zhi-bo. Influence of Mn doping on magnetic γ-Fe2O3 catalysts for selective catalytic reduction at low temperatures[J]. J Eng Thermophys, 2014, 35(5): 995-998.)

    18. [18]

      [18] LIU F D, ASAKURA K, HE H, LIU Y C, SHAN W P, SHI X Y, ZHANG C B. Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Today, 2011, 164(1): 520-527.

    19. [19]

      [19] CHA W, PARK E, CHIN S, YUN S T, JURNG J. Changes in the chemical composition of V2O5-loaded CVC-TiO2 materials with calcination temperatures for NH3-SCR of NOx[J]. J Porous Mat, 2013, 20(5): 1069-1074.

    20. [20]

      [20] 唐念, 陈雄波, 莫建松, 王海强, 吴忠标. 焙烧温度对铈改性钛纳米管脱硝活性及理化特性的影响[J]. 中国电机工程学报, 2013, 33(29): 33-38. (TANG Nian, CHEN Xiong-bo, MO Jian-song, WANG Hai-qiang, WU Zhong-biao. Influence of calcination temperature on the selective catalytic reduction performance and physicochemical properties of ceria doped titanate nanotubes[J]. Proc CSEE, 2013, 33(29): 33-38.)

    21. [21]

      [21] 唐小龙, 郝吉明, 徐文国, 李俊华. 低温条件下Nano-MnOx上NH3选择性催化还原NO[J]. 环境科学, 2007, 28(2): 289-294. (TANG Xiao-long, HAO Ji-ming, XU Wen-guo, LI Jun-hua. Nano-MnOx catalyst for the selective catalytic reduction of NO by NH3 in low-temperature[J]. Environ Sci, 2007, 28(2): 289-294.)

    22. [22]

      [22] 吴东辉, 施新宇, 章忠秀, 施磊. 铁(II)无机物热解制备γ-Fe2O3及其机理[J]. 硅酸盐学报, 2006, 34(6): 699-702. (WU Dong-hui, SHI Xin-yu, ZHANG Zhong-xiu, SHI Lei. Preparation of γ-Fe2O3 through phrolysis of iron (II) inorganic compounds and its mechanism[J]. J Chin Ceram Soc, 2006, 34(6): 699-702.)

    23. [23]

      [23] 王芳, 姚桂焕, 归柯庭. 铁基催化剂选择性催化还原烟气脱硝特性比较研究[J]. 中国电机工程学报, 2009, 29(29): 47-51. (WANG Fang, YAO Gui-huan, GUI Ke-ting. Comparison about selective catalytic reduction of de-NOx on iron-based magnetic materials[J]. Proc CSEE, 2009, 29(29): 47-51.)

    24. [24]

      [24] 高彦杰. 低温选择性催化还原脱硝催化剂的制备及性能研究. 南京: 南京理工大学, 2009. (GAO Yan-jie. Research on the preparation and denitrification performance of low temperature SCR catalyst. Nanjing: Nanjing University of Science & Technology, 2009.)

    25. [25]

      [25] LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010, 114(40): 16929-16936.

    26. [26]

      [26] YANG S J, LI J H, WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, PENG Y, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure-activity relationship[J]. Appl Catal B: Environ, 2012, 117: 73-80.

    27. [27]

      [27] WU Z B, JIANG B Q, LIU Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ, 2008, 79(4): 347-355.

    28. [28]

      [28] XIONG Z B, LU C M, GUO D X, ZHANG X L, HAN K H. Selective catalytic reduction of NOx with NH3 over iron-cerium mixed oxide catalyst: catalytic performance and characterization[J]. J Chem Technol Biot, 2013, 88(7): 1258-1265.

    29. [29]

      [29] 陈婷, 管斌, 林赫, 朱霖. 原位漫反射傅里叶变换红外光谱研究锰铁基催化剂上低温选择性催化还原反应机理[J]. 催化学报, 2014, 35(3): 294-301. (CHEN Ting, GUAN Bin, LIN He, ZHU Lin. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chin J Catal, 2014, 35(3): 294-301.)

    30. [30]

      [30] SHEN B X, WANG F M, LIU T. Homogeneous MnOx-CeO2 pellets prepared by one-step hydrolysis process for low-temperature NH3-SCR[J]. Powder Technol, 2014, 253: 152-157.

    31. [31]

      [31] XIE G Y, LIU Z Y, ZHU Z P, LIU Q Y, GE J, HUANG G Z. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: I. Deactivation of SCR activity by SO2 at low temperatures[J]. J Catal, 2004, 224(1): 36-41.

    32. [32]

      [32] 沈伯雄, 刘亭. 低温NH3-SCR催化剂MnOx-CeOx/ACF的SO2中毒机理[J]. 物理化学学报, 2010, 26(11): 3009-3016. (SHEN Bo-xiong, LIU Ting. Deactivation of MnOx-CeOx/ACF catalysts for low-temperature NH3-SCR in the presence of SO2[J]. Acta Phys-Chim Sin, 2010, 26(11): 3009-3016.)

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(1064)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return