Citation:
ZHANG Jing, WANG Dong-jiang, ZHANG Jia-liang, GUO Hong-chen. Preparation of acetylene and syngas by the atmospheric pressure spark discharge of methane[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(2): 235-242.
-
The direct conversion of methane to acetylene and the indirect conversion of mathane to syngas were studied by using the atmospheric pressure spark discharge, and with the in-situ diagnosis of optical emission spectroscopy. The results were compared with the dielectric barrier discharge. Results show that, the spark discharge, having remarkable advantage of high energy efficiency, was able to easily activate the methane molecules into species such as C, H and C2. C2H2 was formed as a major hydrocarbon product when methane was fed alone, while the syngas was formed with adjustable H2/CO ratio when CO2 and O2 were co-fed with methane. It is worth of mention that, the addition of O2 overcame completely the troublesome problem of reactor coking during the spark discharge of CH4 and CO2, the production of syngas was allowed to be carried out at a temperature as low as 225 ℃. Therefore, the new syngas preparation method is very attractive comparing with the traditional catalytic routes.
-
Keywords:
- methane,
- spark discharge,
- CO2,
- syngas,
- optical emission spectroscopy
-
-
-
[1]
[1] 余长林, 胡久彪, 杨凯, 周晓春. 制备方法对Ni/CeO2-Al2O3催化剂甲烷部分氧化催化性能的影响[J]. 燃料化学学报, 2013, 41(6): 722-728. (YU Chang-lin, HU Jiu-biao, YANG Kai, ZHOU Xiao-chun. Effects of preparationmethods onthe catalytic performance of Ni/CeO2-Al2O3 catalyst in methane partial oxidation[J]. J Fuel Chem Technol, 2013, 41(6): 722-728.)
-
[2]
[2] HORN R, WILLIAMS K A, DEGENSTEIN N J, SCHMIDT L D. Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations[J]. J Catal, 2006, 242(1): 92-102.
-
[3]
[3] 郭章龙, 黄丽琼, 储伟, 罗仕忠. 助剂对NiMgAl 催化剂的结构和甲烷二氧化碳重整反应性能的影响[J]. 物理化学学报, 2014, 30(4): 723-728. (GUO Zhang-long, HUANG Li-qiong, CHU Wei, LUO Shi-Zhong, Effects of promoter on NiMgAl catalyst structure and performance for carbon dioxide reforming of methane[J]. Acta Phy-Chim Sin, 2014, 30(4): 723-728.)
-
[4]
[4] CHOUDHARY V R, MONDAL K C, MULLA S A R. Conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites[J]. Angew Chem Int Ed, 2005, 44(28): 4381-4385.
-
[5]
[5] 吕静, 李振花, 王保伟, 许根慧. 反应器型式对甲烷低温等离子体转化制C2烃的影响[J]. 燃料化学学报, 2005, 33(6): 755-759. (LV Jing, LI Zhen-hua, WANG Bao-wei, XU Gen-hui. Effect of reactor type on methane conversion to C2 hydrocarbons by low temperature plasma[J]. J Fuel Chem Technol, 2005, 33(6): 755-759.)
-
[6]
[6] WANG K J, LI X S, ZHU A M. A green process for high-concentration ethylene and hydrogen production from methane in a plasma-followed-by-catalyst reactor[J]. Plasma Sci Technol, 2011, 13(1): 77-81.
-
[7]
[7] SENTEK J, KRAWCZYK K, MLOTEK M, KALCZEWSKA M, KROKER T, KOLB T, SCHENK A, GERICKE K H, SCHMIDT S K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges[J]. Appl Catal B: Environ, 2010, 94(1/2): 19-26.
-
[8]
[8] 周军成, 尹燕华, 郑邯勇, 周旭, 徐月, 龚俊松, 张龙龙, 宋光涛. 甲烷氧等离子体直接合成过氧化氢[J]. 高等学校化学学报, 2011, 32(10): 2240-2242. (ZHOU Jun-cheng, YIN Yan-hua, ZHENG Han-yong, ZHOU Xu, XU Yue, GONG Jun-song, ZHANG Long-long, SONG Guang-tao. Direct synthesis of H2O2 using methane-oxygen plasma[J]. Chem J Chin Univ, 2011, 32(10): 2240-2242.)
-
[9]
[9] 董洁, 王丽, 赵越, 张家良, 郭洪臣. 添加气对非平衡等离子体转化低碳烷烃的影响[J]. 高等学校化学学报, 2013, 34(1): 192-197. (DONG Jie, WANG Li, ZHAO Yue, ZHANG Jia-liang, GUO Hong-chen. Effect of additive gases on light alkanes converting under dielectric barrier discharge[J]. Chem J Chin Univ, 2013, 34(1): 192-197.)
-
[10]
[10] LIU C J, MALLINSON R, LOBBAN L. Comparative investigations on plasma catalytic methane conversion to higher hydrocarbons over zeolites[J]. Appl Catal A: Gen, 1999, 178(1): 17-27.
-
[11]
[11] INDARTO A, CHOI J W, LEE H, SONG H K. Effect of additive gases on methane conversion using gliding arc discharge[J]. Energy, 2006, 31(14): 2986-2995.
-
[12]
[12] SHEN C S, SUN D K, YANG H S. Methane coupling in microwave plasma under atmospheric pressure[J]. J Nat Gas Chem, 2011, 20(4): 449-456.
-
[13]
[13] MOSHREFI M M, RASHIDI F. Hydrogen production from methane by DC spark discharge: Effect of current and voltage[J]. J Nat Gas Sci Eng, 2014, 16: 85-89.
-
[14]
[14] ALEKNAVICIUTE I, KARAYIANNIS T G, COLLINS M W, XANTHOS C. Methane decomposition under a corona discharge to generate COx-free hydrogen[J]. Energy, 2013, 59(15): 432-439.
-
[15]
[15] XU C, TU X. Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor[J]. J Energy Chem, 2013, 22(3): 420-425.
-
[16]
[16] LI X S, SHI C, WANG K J, ZHANG X L, XU Y, ZHU A M. High yield of aromatics from CH4 in a plasma-followed-by-catalyst (PFC) reactor[J]. AIChE J, 2006, 52(9): 3321-3324.
-
[17]
[17] MUHAMMAD A M, DAVID H, AREEJ M, SHU X, KARL H. Schoenbach. Study of the production of hydrogen and light hydrocarbons by spark discharges in diesel, kerosene, gasoline, and methane[J]. Plasma Chem Plasma P, 2013, 33(1): 271-279.
-
[18]
[18] WANG Q, SHI H L, YAN B H, JIN Y, CENG Y. Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor[J]. Int J Hydrogen Energy, 2011, 36(14): 8301-8306.
-
[19]
[19] ZHANG X M, CHA M S. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor[J]. J Phys D: Appl Phys, 2013, 46(41): 415205.
-
[20]
[20] TAE K K, WON G L. Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system[J]. J Ind Eng Chem, 2012, 18(5): 1710-1714.
-
[21]
[21] MOSHREFI M M, RASHIDI F, BOZROGZADEH H R, HAGHIGHI M E. Dry reforming of methane by DC spark discharge with a rotating electrode[J]. Plasma Chem Plasma P, 2013, 33(2): 453-466.
-
[22]
[22] HEINTZE M, MAGUREANU M, KETTLITZ M. Mechanism of C2 hydrocarbon formation from methane in a pulsed microwave plasma[J]. J Appl Phys, 2002, 92(12): 7022-7031.
-
[23]
[23] PEARSE R W B, GAYCON A G. Identification of molecular spectra[M]. Chapman and Hall: London, 1965: 82-83.
-
[24]
[24] HARILAL S S, ISSAC R C, BINDHU C V, NAMPOORI V P N, VALLABHAN C P G. Optical emission studies of species in laser-produced plasma from carbon[J]. J Phys D: Appl Phys, 1997, 30(12): 1703-1709.
-
[25]
[25] KADO S, URASAKI K, SEKINE Y, FUJIMOTO K, NOZAKI T, OKAZAKI K. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature[J]. Fuel, 2003, 82(18): 2291-2297.
-
[26]
[26] CHRISTOPHE D B, BERT V, TOM M, JAN V D, SABINE P, ANNEMIE B. Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge[J]. Plasma Process Polym, 2011, 8(11): 1033-1058.
-
[27]
[27] JANEV R K, REITER D. Collision processes of CHy and CHy+ hydrocarbons with plasma electrons and protons[J]. Phys Plasmas, 2002, 9: 4071-4081.
-
[28]
[28] HORACEK J, CIZEK M, HOUFEK K, KOLORENC P, DOMCKE W. Dissociative electron attachment and vibrational excitation of H2 by low-energy electrons: Calculations based on an improved nonlocal resonance model. II. Vibrational excitation[J]. Phys Rev A, 2006, 73(2): 022701.
-
[29]
[29] NAITO S, IKEDA M, ITO N, HATTORI T, GOTO T. Effect of rare gas dilution on CH3 radical density in RF-discharge CH4 plasma[J]. Jpn J Appl Phys, 1993, 32(12A): 5721-5725.
-
[30]
[30] ICHIKAWA Y, TEII S. Molecular ion and metastable atom formations and their effects on the electron temperature in medium-pressure rare-gas positive-column plasmas[J]. J Phys D: Appl Phys, 1980, 13(11): 2031-2043.
-
[31]
[31] MCCONKEY J W, MALONE C P, JOHNSON P V, WINSTEAD C, MCKOY V, KANIK I. Electron impact dissociation of oxygen-containing molecules-A critical review[J]. Phys Rep, 2008, 466(1/3): 1-103.
-
[32]
[32] STEEN M L, BUTOI C I, FISHER E R. Identification of gas-phase reactive species and chemical mechanisms occurring at plasma-polymer surface interfaces[J]. Langmuir, 2001, 17(26): 8156-8166.
-
[1]
-
-
-
[1]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073
-
[2]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[4]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[7]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[8]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[9]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[10]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[13]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[14]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[15]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[16]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[17]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[18]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[19]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[20]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(369)
- HTML views(12)