Citation: HONG Xin, TANG Ke. Modification and adsorptive denitrification of NaY molecular sieve[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 214-220. shu

Modification and adsorptive denitrification of NaY molecular sieve

  • Corresponding author: TANG Ke, 
  • Received Date: 21 August 2014
    Available Online: 17 October 2014

    Fund Project: 辽宁省自然科学基金(2014020113) (2014020113) 辽宁省高等学校优秀人才支持计划(LJQ2012057) (LJQ2012057) 辽宁工业大学教师启动资金(X201311)。 (X201311)

  • NaY molecular sieve, modified by NH+4, Zn2+, Cu2+, Cr3+ metallic cations, were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and nitrogen adsorption. XRD and FT-IR results indicated that the crystalline structure of the Y molecular sieve was not changed after modification. The average pore size, Brunauer-Emmett-Teller (BET) surface area and the pore volume of CrY was smaller than other modified molecular sieves. CrY had some mesopores. The modified molecular sieve was used to adsorb nitrogen from simulated fuel containing quinoline. The molecular size of quinoline, calculated by using density functional theory (DFT), was 0.711 6 nm×0.500 2 nm, implying that the quinoline can not access easily to the 0.74 nm microporous pores of Y molecular sieve. The denitrification performance of modified catalysts was in the order: CrY, CuY, ZnY and NH4Y, which implying that the absorption denitrification performance of modified Y molecular sieve related to valence state of metal ion. The result showed that the effects of absorption time on denitrification removal at modified Y molecular sieve by same valence metal ions were showed the same trend and the higher the valence, the higher the denitrification removal. Adsorption temperature had little influence on the denitrification removal by using CrY and NH4Y molecular sieve could be used at room temperature. The adsorption removal of quinoline by CuY and ZnY increased with the increasing temperature. The calcination had effects on the denitrification performance of CrY. The XRD measurement showed that the skeleton of CrY molecule sieve had been burned down and had almost totally lost its denitrification capability.
  • 加载中
    1. [1]

      [1] 瞿玉龙, 沈健. HY分子筛吸附脱除油品中碱性氮化物的研究[J]. 石油炼制与化工, 2011, 42(1): 41-43. (ZHAI Yu-long, SHEN Jian. Study on the adsorption of basic nitrogen compounds from oil with HY molecular sieve[J]. Petrol Process Petrochem, 2011, 42(1): 41-43.)

    2. [2]

      [2] 张月琴. 直馏柴油和焦化柴油中含氮化合物类型分布[J]. 石油炼制与化工, 2013, 44(1): 41-45. (ZHANG Yue-qin. Characterizations of nitrogen compounds in coker gas oil and stralght run diesel oil[J]. Petrol Process Petrochem, 2013, 44(1): 41-45.)

    3. [3]

      [3] 陈小博, 孙金鹏, 沈本贤, 李春义, 杨朝合, 山红红, 曾飞峙. 碱性氮化物对USY和ZSM-5型催化裂化催化剂催化性能的影响[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 164-168. (CHEN Xiao-bo, SUN Jin-peng, SHEN Ben-xian, LI Chun-yi, YANG Chao-he, SHAN Hong-hong, ZENG Fei-zhi. Effect of basic nitrogen compounds on catalytic performance of USY and ZSM-5 catalytic cracking catalysts[J]. J Chin Univ Petrol, 2012, 36(5): 164-168.)

    4. [4]

      [4] 刘兴利, 王榕, 李永红. 吸附法脱除烷基化用汽油中的碱性氮化物[J]. 离子交换与吸附, 2009, 25(1): 45-51. (LIU Xing-li, WANG Rong, LI Yong-hong. Denitrogenation of FCC denitrogenation of FCC gasoline used as the feedstock of alkylation by several different adsorbents[J]. Ion Exchange Adsorpt, 2009, 25(1): 45-51.)

    5. [5]

      [5] 陈月株, 孙玉华, 周亚松. 石油馏分中脱除氮化物的方法: 中国, CN 1045459C. 1999-10-06. (CHEN Yue-zhu, SUN Yu-hua, ZHOU Ya-song. Method of removing nitrogen compounds in petroleum fractions: CN, 1045459C. 1999-10-06.)

    6. [6]

      [6] 程时文, 兰玲, 于彦校, 袁晓亮, 金君素, 吴平易. Y分子筛改性对其结构和酸性的影响[J]. 石化技术与应用, 2011, 29(5): 401-405. (CHENG Shi-wen, LAN Ling, YU Yan-xiao, YUAN Xiao-liang, JIN Jun-su, WU Ping-yi. Effects of modification methods on structure and acidic property of Y zeolite[J]. Petrochem Technol Appl, 2011, 29(5): 401-405.)

    7. [7]

      [7] TANG K, HONG X, ZHAO Y H. Adsorptive desulfurization on a heteroatoms Y zeolite prepared by secondary synthesis[J]. Sci China Chem, 2010, 1(53): 281-286.

    8. [8]

      [8] 王旺银, 潘明雪, 秦玉才, 王凌涛, 宋丽娟. Cu(Ⅰ)Y 分子筛表面酸性对其吸附脱硫性能的影响[J]. 物理化学学报, 2011, 27(5): 1176-1180. (WANG Wang-yin, PAN Ming-xue, QIN Yu-cai, WANG Ling-tao, SONG Li-juan. Effects of surface acidity on the adsorption desulfurization of Cu(Ⅰ)Y zeolite[J]. Acta Phys-Chim Sin, 2011, 27(5): 1176-1180.)

    9. [9]

      [9] 唐克, 洪新, 宋丽娟, 孙兆林. 二次合成Y型杂原子分子筛的吸附脱硫研究[J]. 燃料化学学报, 2012, 40(4): 507-512. (TANG Ke, HONG Xin, SONG Li-juan, SUN Zhao-lin. Preparation of heteroatom Y zeolite by secondary synthesis and its performance in adsorptive desulfurization[J]. J Fuel Chem Technol, 2012, 40(4): 507-512.)

    10. [10]

      [10] 朱金柱, 沈健. SBA-15吸附脱除油品中的碱性氮化物[J]. 石油学报(石油加工), 2012, 40(11): 566-570. (ZHU Jin-zhu, SHEN Jian. Adsorption of basic nitrogen compounds from oil by SBA-15 zeolite[J]. Acta Petrol Sin (Pet Process Section), 2012, 40(11): 566-570.)

    11. [11]

      [11] 朱金柱, 沈健, 韩英. Nb-SBA-15的制备及吸附脱氮性能[J]. 硅酸盐学报, 2012, 40(11): 1666-1670. (ZHU Jin-zhu, SHEN Jian, HAN Ying. Preparation and adsoparation denitrication of Nb-SBA-15 zeolite[J]. J Chin Ceram Soc, 2012, 40(11): 1666-1670.)

    12. [12]

      [12] 徐晓宇, 孙悦, 沈健, 翟玉龙. HY 和 USY 分子筛对模拟油品中碱性氮化物的吸附行为[J]. 化工进展, 2014, 33(4): 1035-1040. (XU Xiao-yu, SUN Yue, SHEN Jian, ZHAI Yu-long. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves[J]. Chem Ind Eng Progress, 2014, 33(4): 1035-1040.)

    13. [13]

      [13] 王福帅, 李会鹏, 赵华, 房斌斌. NaY/β复合分子筛改性及对模拟柴油中氮化物的吸附性能[J]. 石油炼制与化工, 2012, 43(11): 59-62. (WANG Fu-shuai, LI Hui-peng, ZHAO Hua, FANG Bin-bin. Modification of NaY/β composite molecular sieve and its adsorption performance of removing nitrogen containing compounds in model oil[J]. Petrol Process Petrochem, 2012, 43(11): 59-62.)

    14. [14]

      [14] 李少凯, 阮本玺, 沈健, 赵明飞. 硅胶吸附脱除模拟油品中的碱性氮化物[J]. 石油炼制与化工, 2013, 44(6): 22-25. (LI Shao-kai, RUAN Ben-xi, SHEN Jian, ZHAO Ming-fei. Study on nitrogen compounds adsorption performance of silica gel[J]. Petrol Process Petrochem, 2013, 44(6): 22-25.)

    15. [15]

      [15] 蒋超. 改性硅胶用于柴油吸附脱氮的基础研究. 中国石油大学, 2010. (JIANG Chao. The basic research in denitrogenation of diesel oil by modified silica gel. Beijing: China University of Petroleum, 2010.)

    16. [16]

      [16] 迟志明. 介孔分子筛用于柴油吸附脱氮的基础研究. 中国石油大学, 2010. (CHI Zhi-ming. Basic research of Al-MCM-41 molecular sieve for denitrogenation of diese oil. Beijing: China University of Petroleum, 2010.)

    17. [17]

      [17] 张晗. 燃料中含氮化合物的吸附脱除. 大连理工大学, 2009. (ZHANG Han. Adsorptive removal of nitrogen-containing compounds from fuel. Dalian: Dalian University of Technology, 2009.)

    18. [18]

      [18] 肖和淼, 高孝恢. 不同阳离子Y型分子筛的红外研究[J]. 中国有色金属学报, 2000, 10(4): 597-598. (XIAO He-miao, GAO Xiao-hui. Infrared spectrum investigation of varied cations'Y-type zeolites[J]. Chin J Nonferrous Met, 2000, 10(4): 597-598.)

    19. [19]

      [19] 邵为谠, 任靖, 曹光伟, 王安杰, 胡永康. 喹啉对Ni-Mo催化剂HDS性能的影响[J]. 石油学报(石油加工), 2011, 27(3): 348-354. (SHAO Wei-dang, REN Jing, CAO Guang-wei, WANG An-jie, HU Yong-kang. Effect of quinoline on the HDS performance of Ni-Mo catalysts[J]. Acta Petrol Sin (Pet Process Section), 2011, 27(3): 348-554.)

    20. [20]

      [20] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. (XU Ru-ren, PANG Wen-qing. Chemistry-zeolites and porous materials[M]. Beijing: Science Press. 2004.)

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(0)
  • Abstract views(1247)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return