Citation: CHU Qi, FENG Jie, ZHANG Li-li, XU Kun, XIE Ke-chang. Promoting effect of potassium on sulfur resistance in benzene hydrogenation over Ni2Mo3N[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 208-213. shu

Promoting effect of potassium on sulfur resistance in benzene hydrogenation over Ni2Mo3N

  • Corresponding author: FENG Jie, 
  • Received Date: 22 October 2014
    Available Online: 5 December 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2011AA05A204) (863计划, 2011AA05A204) 教育部长江学者奖励计划(2009)。 (2009)

  • To improve sulfur resistance of bimetallic nitrides in benzene hydrogenation reaction, K-promoted (K-Ni2Mo3N) catalysts were prepared to investigate the effect of potassium on sulfur resistance. K-Ni2Mo3N expressed a higher sulfur resistance than Ni2Mo3N when used in benzene hydrogenation with 0.01% thiophene condition. Combined XPS and H2-TPR characterization results, it could be concluded the potassium species might donate electrons to nickel species to make nickel species an electron-enriched state, which might weaken the interaction bewteen thiophene and nickel species. The TPD-MS results also confirmed the potassium species weakened the thiophene adsorption on the catalyst surface. The critical parameter of sulfur resistance are the suitable adsorption strength which could be handled by the electron condition of active site.
  • 加载中
    1. [1]

      [1] PANG M, WANG X, XIA W, MUHLER M, LIANG C. Mo(VI)-melamine hybrid as single-source precursor to pure-phase β-Mo2C for the selective hydrogenation of naphthalene to tetralin[J]. Ind Eng Chem Res, 2013, 52(12): 4564-4571.

    2. [2]

      [2] 王小慧, 张明慧, 李伟, 陶克毅. 络合物分解法制备碳氮夹杂钼基催化剂及其催化性能[J]. 中国科学B辑: 化学, 2009, 39(9): 897-903. (WANG Xiao-hui, ZHANG Ming-hui, LI Wei, TAO Ke-yi. The preparation of Mo2C(N) catalyst through complex-decomposition method and its catalysts performance[J]. Sci China, Ser B: Chem, 2009, 39(9): 897-903.)

    3. [3]

      [3] 王智强, 张明慧, 李伟, 陶克毅. Ni-Mo2N/SiO2复合纳米催化剂的制备及其对四氢萘加氢的催化活性[J]. 催化学报, 2008, 29(3): 292-296. (WANG Zhi-qiang, ZHANG Ming-hui, LI Wei, TAO Ke-yi. Synthesis of Ni-Mo2N/SiO2 nanocomposite catalyst and its catalytic activity for tetralin hydrogenation[J]. Chin J Catal, 2008, 29(3): 292-296.)

    4. [4]

      [4] RAMANATHAN S, OYAMA S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides[J]. J Phys Chem, 1995, 99(44): 16365-16372.

    5. [5]

      [5] DHANDAPANI B, ST CLAIR T, OYAMA S T. Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide[J]. Appl Catal A: Gen, 1998, 168(2): 219-228.

    6. [6]

      [6] MAMÈDE A S, GIRAUDON J M, LÖFBERG A, LECLERCQ L, LECLERCQ G. Hydrogenation of toluene over β-Mo2C in the presence of thiophene[J]. Appl Catal A: Gen, 2002, 227(1/2): 73-82.

    7. [7]

      [7] ZHENG X Z, ZHANG Y H, HUANG S P, LIU H, WANG P, TIAN H P. Adsorption of thiophene on transition metal atoms (Co, Ni and Mo) modified Al20O30 clusters: DFT approaches[J]. Comput Theor Chem, 2012, 979: 64-72.

    8. [8]

      [8] WU Z L, LI C, WEI Z B, YING P L, XIN Q. FT-IR Spectroscopic studies of thiophene adsorption and reactions on Mo2N/γ-Al2O3 catalysts[J]. J Phys Chem B, 2002, 106(5): 979-987.

    9. [9]

      [9] KIM J S, KIM B K, KIM Y C. Effect of Cu alloying on S poisoning of Ni surface via ab initio thermodynamics calculations[J]. Phys Status Solidi A, 2014, 211(8): 1882-1888.

    10. [10]

      [10] JIA L C, WANG X, HUA B, LI W L, CHI B, PU J, YUAN S L, JIAN L. Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces[J]. Int J Hydrogen Energy, 2012, 37(16): 11941-11945.

    11. [11]

      [11] CHOI Y M, COMPSON C, LIN M C, LIU M. Ab initio analysis of sulfur tolerance of Ni, Cu, and Ni-Cu alloys for solid oxide fuel cells[J]. J Alloys Compd, 2007, 427(1/2): 25-29.

    12. [12]

      [12] PILLAY D, JOHANNES M D. Comparison of sulfur interaction with hydrogen on Pt(111), Ni(111) and Pt3Ni(111) surfaces: The effect of intermetallic bonding[J]. Surf Sci, 2008, 602(16): 2752-2757.

    13. [13]

      [13] WANG W J, LI H X, DENG J F. Boron role on sulfur resistance of amorphous NiB/SiO2 catalyst poisoned by carbon disulfide in cyclopentadiene hydrogenation[J]. Appl Catal A: Gen, 2000, 203(2): 293-300.

    14. [14]

      [14] JONGPATIWUT S, LI Z, RESASCO D E, ALVAREZ W E, SUGHRUE E L, DODWELL G W. Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts[J]. Appl Catal A: Gen, 2004, 262(2): 241-253.

    15. [15]

      [15] CHEN I, SHIUE D W. Resistivity to sulfur poisoning of nickel-alumina catalysts[J]. Ind Eng Chem Res, 1988, 27(8): 1391-1396.

    16. [16]

      [16] FARKAS A P, SOLYMOSI F. Effects of potassium on the adsorption and dissociation pathways of methanol and ethanol on Mo2C/Mo(100)[J]. Surf Sci, 2008, 602(7): 1475-1485.

    17. [17]

      [17] PISTONESI C, JUAN A, FARKAS A P, SOLYMOSI F. Effects of potassium on the adsorption of methanol on β-Mo2C(001) surface[J]. Surf Sci, 2010, 604(11/12): 914-919.

    18. [18]

      [18] BUGYI L, SOLYMOSI F. Effects of potassium on the chemisorption of CO on the Mo2C/Mo(100) surface[J]. J Phys Chem B, 2001, 105(19): 4337-4342.

    19. [19]

      [19] HAN J W, LI L W, SHOLL D S. Density functional theory study of H and CO adsorption on alkali-promoted Mo2C surfaces[J]. J Phys Chem C, 2011, 115(14): 6870-6876.

    20. [20]

      [20] KOJIMA R, AIKA K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization[J]. Appl Catal A: Gen, 2001, 215(1/2): 149-160.

    21. [21]

      [21] CHU Q, FENG J, LI W Y, XIE K C. Synthesis of Ni/Mo/N catalyst and its application in benzene hydrogenation in the presence of thiophene[J]. Chin J Catal, 2013, 34(1): 159-166.

    22. [22]

      [22] GALEA N M, LO J M H, ZIEGLER T. A DFT study on the removal of adsorbed sulfur from a nickel(111) surface: Reducing anode poisoning[J]. J Catal, 2009, 263(2): 380-389.

    23. [23]

      [23] DÍAZ A, GANDÍA L M, ODRIOZOLA J A, MONTES M. Influence of the nickel reduction degree on the toxicity of H2S and thiophene over a Ni/SiO2 catalyst[J]. J Catal, 1996, 162(2): 349-358.

    24. [24]

      [24] NIKULSHIN P A, ISHUTENKO D I, MOZHAEV A A, MASLAKOV K I, PIMERZIN A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agentson their catalytic properties in HDS and HYD reactions[J]. J Catal, 2014, 312(4): 152-169.

    25. [25]

      [25] SHI C, ZHU A M, YANG X F, AU C T. On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen[J]. Appl Catal A: Gen, 2004, 276(1/2): 223-230.

    26. [26]

      [26] RESHETNIKOV S I, IVANOV E A, STARTSEV A N. Benzene hydrogenation in the thiophene presence over the sulfide Ni-Mo/gamma-Al2O3 catalyst under periodic operation: Kinetics and process modelling[J]. Chem Eng J, 2007, 134(1/3): 100-105.

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    7. [7]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    8. [8]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    12. [12]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    13. [13]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    14. [14]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    15. [15]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    19. [19]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(0)
  • Abstract views(637)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return