Citation:
CHU Qi, FENG Jie, ZHANG Li-li, XU Kun, XIE Ke-chang. Promoting effect of potassium on sulfur resistance in benzene hydrogenation over Ni2Mo3N[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(2): 208-213.
-
To improve sulfur resistance of bimetallic nitrides in benzene hydrogenation reaction, K-promoted (K-Ni2Mo3N) catalysts were prepared to investigate the effect of potassium on sulfur resistance. K-Ni2Mo3N expressed a higher sulfur resistance than Ni2Mo3N when used in benzene hydrogenation with 0.01% thiophene condition. Combined XPS and H2-TPR characterization results, it could be concluded the potassium species might donate electrons to nickel species to make nickel species an electron-enriched state, which might weaken the interaction bewteen thiophene and nickel species. The TPD-MS results also confirmed the potassium species weakened the thiophene adsorption on the catalyst surface. The critical parameter of sulfur resistance are the suitable adsorption strength which could be handled by the electron condition of active site.
-
Keywords:
- Ni2Mo3N,
- potassium,
- sulfur resistance,
- thiophene,
- benzene hydrogenation
-
-
-
[1]
[1] PANG M, WANG X, XIA W, MUHLER M, LIANG C. Mo(VI)-melamine hybrid as single-source precursor to pure-phase β-Mo2C for the selective hydrogenation of naphthalene to tetralin[J]. Ind Eng Chem Res, 2013, 52(12): 4564-4571.
-
[2]
[2] 王小慧, 张明慧, 李伟, 陶克毅. 络合物分解法制备碳氮夹杂钼基催化剂及其催化性能[J]. 中国科学B辑: 化学, 2009, 39(9): 897-903. (WANG Xiao-hui, ZHANG Ming-hui, LI Wei, TAO Ke-yi. The preparation of Mo2C(N) catalyst through complex-decomposition method and its catalysts performance[J]. Sci China, Ser B: Chem, 2009, 39(9): 897-903.)
-
[3]
[3] 王智强, 张明慧, 李伟, 陶克毅. Ni-Mo2N/SiO2复合纳米催化剂的制备及其对四氢萘加氢的催化活性[J]. 催化学报, 2008, 29(3): 292-296. (WANG Zhi-qiang, ZHANG Ming-hui, LI Wei, TAO Ke-yi. Synthesis of Ni-Mo2N/SiO2 nanocomposite catalyst and its catalytic activity for tetralin hydrogenation[J]. Chin J Catal, 2008, 29(3): 292-296.)
-
[4]
[4] RAMANATHAN S, OYAMA S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides[J]. J Phys Chem, 1995, 99(44): 16365-16372.
-
[5]
[5] DHANDAPANI B, ST CLAIR T, OYAMA S T. Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide[J]. Appl Catal A: Gen, 1998, 168(2): 219-228.
-
[6]
[6] MAMÈDE A S, GIRAUDON J M, LÖFBERG A, LECLERCQ L, LECLERCQ G. Hydrogenation of toluene over β-Mo2C in the presence of thiophene[J]. Appl Catal A: Gen, 2002, 227(1/2): 73-82.
-
[7]
[7] ZHENG X Z, ZHANG Y H, HUANG S P, LIU H, WANG P, TIAN H P. Adsorption of thiophene on transition metal atoms (Co, Ni and Mo) modified Al20O30 clusters: DFT approaches[J]. Comput Theor Chem, 2012, 979: 64-72.
-
[8]
[8] WU Z L, LI C, WEI Z B, YING P L, XIN Q. FT-IR Spectroscopic studies of thiophene adsorption and reactions on Mo2N/γ-Al2O3 catalysts[J]. J Phys Chem B, 2002, 106(5): 979-987.
-
[9]
[9] KIM J S, KIM B K, KIM Y C. Effect of Cu alloying on S poisoning of Ni surface via ab initio thermodynamics calculations[J]. Phys Status Solidi A, 2014, 211(8): 1882-1888.
-
[10]
[10] JIA L C, WANG X, HUA B, LI W L, CHI B, PU J, YUAN S L, JIAN L. Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces[J]. Int J Hydrogen Energy, 2012, 37(16): 11941-11945.
-
[11]
[11] CHOI Y M, COMPSON C, LIN M C, LIU M. Ab initio analysis of sulfur tolerance of Ni, Cu, and Ni-Cu alloys for solid oxide fuel cells[J]. J Alloys Compd, 2007, 427(1/2): 25-29.
-
[12]
[12] PILLAY D, JOHANNES M D. Comparison of sulfur interaction with hydrogen on Pt(111), Ni(111) and Pt3Ni(111) surfaces: The effect of intermetallic bonding[J]. Surf Sci, 2008, 602(16): 2752-2757.
-
[13]
[13] WANG W J, LI H X, DENG J F. Boron role on sulfur resistance of amorphous NiB/SiO2 catalyst poisoned by carbon disulfide in cyclopentadiene hydrogenation[J]. Appl Catal A: Gen, 2000, 203(2): 293-300.
-
[14]
[14] JONGPATIWUT S, LI Z, RESASCO D E, ALVAREZ W E, SUGHRUE E L, DODWELL G W. Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts[J]. Appl Catal A: Gen, 2004, 262(2): 241-253.
-
[15]
[15] CHEN I, SHIUE D W. Resistivity to sulfur poisoning of nickel-alumina catalysts[J]. Ind Eng Chem Res, 1988, 27(8): 1391-1396.
-
[16]
[16] FARKAS A P, SOLYMOSI F. Effects of potassium on the adsorption and dissociation pathways of methanol and ethanol on Mo2C/Mo(100)[J]. Surf Sci, 2008, 602(7): 1475-1485.
-
[17]
[17] PISTONESI C, JUAN A, FARKAS A P, SOLYMOSI F. Effects of potassium on the adsorption of methanol on β-Mo2C(001) surface[J]. Surf Sci, 2010, 604(11/12): 914-919.
-
[18]
[18] BUGYI L, SOLYMOSI F. Effects of potassium on the chemisorption of CO on the Mo2C/Mo(100) surface[J]. J Phys Chem B, 2001, 105(19): 4337-4342.
-
[19]
[19] HAN J W, LI L W, SHOLL D S. Density functional theory study of H and CO adsorption on alkali-promoted Mo2C surfaces[J]. J Phys Chem C, 2011, 115(14): 6870-6876.
-
[20]
[20] KOJIMA R, AIKA K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization[J]. Appl Catal A: Gen, 2001, 215(1/2): 149-160.
-
[21]
[21] CHU Q, FENG J, LI W Y, XIE K C. Synthesis of Ni/Mo/N catalyst and its application in benzene hydrogenation in the presence of thiophene[J]. Chin J Catal, 2013, 34(1): 159-166.
-
[22]
[22] GALEA N M, LO J M H, ZIEGLER T. A DFT study on the removal of adsorbed sulfur from a nickel(111) surface: Reducing anode poisoning[J]. J Catal, 2009, 263(2): 380-389.
-
[23]
[23] DÍAZ A, GANDÍA L M, ODRIOZOLA J A, MONTES M. Influence of the nickel reduction degree on the toxicity of H2S and thiophene over a Ni/SiO2 catalyst[J]. J Catal, 1996, 162(2): 349-358.
-
[24]
[24] NIKULSHIN P A, ISHUTENKO D I, MOZHAEV A A, MASLAKOV K I, PIMERZIN A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agentson their catalytic properties in HDS and HYD reactions[J]. J Catal, 2014, 312(4): 152-169.
-
[25]
[25] SHI C, ZHU A M, YANG X F, AU C T. On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen[J]. Appl Catal A: Gen, 2004, 276(1/2): 223-230.
-
[26]
[26] RESHETNIKOV S I, IVANOV E A, STARTSEV A N. Benzene hydrogenation in the thiophene presence over the sulfide Ni-Mo/gamma-Al2O3 catalyst under periodic operation: Kinetics and process modelling[J]. Chem Eng J, 2007, 134(1/3): 100-105.
-
[1]
-
-
-
[1]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[2]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
-
[4]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
-
[7]
Kun Zou , Yihang Xiao , Jinyu Yang , Mingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497
-
[8]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[9]
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
-
[10]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[11]
Junjie Duan , Dan Chen , Long Chen , Shuying Li , Ting Chen , Dong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445
-
[12]
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
-
[13]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[14]
Qilin YU , Yifei XU , Pengjun ZHANG , Shuwei HAO , Chongqiang ZHU , Chunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418
-
[15]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[17]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[18]
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
-
[19]
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
-
[20]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(638)
- HTML views(47)