Citation: CHEN Hui-chao, WU Wei, LIANG Cai. Effect of attapulgite on PM2.5 emission and agglomeration during coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 177-184. shu

Effect of attapulgite on PM2.5 emission and agglomeration during coal combustion

  • Corresponding author: CHEN Hui-chao, 
  • Received Date: 15 October 2014
    Available Online: 9 December 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2013CB228505)。 (973计划, 2013CB228505)

  • Effect of attapulgite on PM2.5 emissions and agglomeration during coal combustion was investigated in a fixed bed system. The effects of addition amount, combustion temperature, mole ratio of calcium to sulfate and combustion atmosphere on mass and number concentration and collection efficiency of PM2.5 were analyzed. The results show that attapulgite added during coal combustion can effectively reduce PM2.5 emissions. The suitable amount of attapulgite is no more than 3%. PM2.5 emission during coal combustion in air is higher than that in O2/CO2 atmosphere. PM1 mass concentration decreases with increasing mole ratio of calcium to sulfate, while PM1~2.5 mass concentration increases, indicating an increasing trend in particle size. Increasing combustion temperature will increase PM2.5 emission and reduce its collection.
  • 加载中
    1. [1]

      [1] 吕建燚, 李定凯. 不同条件对煤粉燃烧后PM10、PM2.5、PM1排放影响的实验研究[J]. 中国电机工程学报, 2006, 26(20): 103-107. (LV Jian-yi, LI Ding-kai. Experimental study on PM10, PM2.5, PM1 emission features influenced by different conditions in pulverized coal combustion[J]. Chin Soc Electr Eng, 2006, 26(20): 103-107.)

    2. [2]

      [2] STRAND M, PAGELS J, SZPILA A, GUDMUNDSSON A, SWIETLICKI E, BOHGARD M, SANATI M. Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler[J]. Energy Fuels, 2002, 16(6): 1499-1506.

    3. [3]

      [3] 岳勇, 陈雷, 姚强, 李水清. 燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J]. 中国电机工程学报, 2005, 25(18): 74-79. (YUE Yong, CHEN lei, CAO Qiang, LI Shui-qing. Experimental study on characteristics of particulate matter size distribution and trace elements enrichment in emissions from a pulverized coal-fired boiler[J]. Chin Soc Electr Eng, 2005, 25(18): 74-79.)

    4. [4]

      [4] SENIOR C L, BOOL L E, SRINIVASACHAR S, PEASEB B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverrized sub-bituminous coal[J]. Fuel Process Technol, 2000, 63(2/3): 149-165.

    5. [5]

      [5] SONDREAL E A, BENSON S A, PAVLISH J H, NICHOLAS V C R. An overview of air quality: Mercury, trace elements, and particulate matter[J]. Fuel Process Technol, 2004, 85(6/7): 425-440.

    6. [6]

      [6] 魏凤, 张军营, 王春梅, 郑楚光. 煤燃烧超细颗粒物团聚促进技术的研究进展[J]. 煤炭转化, 2004, 26(3): 27-31. (WEI Feng, ZHANG Jun-ying, WANG Chun-mei, ZHENG Chu-guang. Review of submicron particles agglomeration in coal combustion process[J]. Coal Convers, 2004, 26(3): 27-31.)

    7. [7]

      [7] 徐鸿, 骆仲泱, 王鹏, 王涛, 高翔, 岑可法. 石灰石对煤燃烧产生颗粒物及重金属影响实验研究[J]. 工程热物理学报, 2004, 25(5): 871-874. (XU Hong, LUO Zhong-yang, WANG Peng, WANG Tao, GAO Xiang, CEN Ke-fa. Experimental research of limestone effect on particulates and heavy metals emitted from coal combustion[J]. J Eng Thermophysics, 2004, 25(5): 871-874.)

    8. [8]

      [8] TAKUWA T, NARUSE I. Emission control of sodium compounds and their formation mechanisms during coal combustion[J]. Proc Combust Inst, 2007, 31(2): 2863-2870.

    9. [9]

      [9] 屈成瑞, 赵长遂, 段伦博, 周骛. O2 /CO2 气氛添加高岭石对燃煤PM2. 5 排放的影响[J]. 燃料化学学报, 2010, 38(4): 398-402. (QU Cheng-rui, ZHAO Chang-sui, DUAN Lun-bo, ZHOU Wu. Effect of kaolinite additive on formation of PM2.5 under O2 /CO2 atmosphere during coal combustion[J]. J Fuel Chem Technol, 2010, 38(4): 398-402.)

    10. [10]

      [10] BRADLEY W F. The structure scheme of attapulgite[J]. Am Mineral, 1940, 25: 405-410.

    11. [11]

      [11] 张玉. 凹凸棒粘土及其在印染行业中的应用. 上海: 东华大学硕士学位论文, 2013. (ZHANG Yu. Application of the attapulgite clay in dyeing and finishing industry. Shanghai: Donghua University, 2013.)

    12. [12]

      [12] HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J]. Chem Eng Process, 1995, 34(3): 235-244.

    13. [13]

      [13] HEIDENREICH S, VOGT U, BVTTNER H, EBERT F. A novel process to separate submicron particles from gases-a cascade of packed columns[J]. Chem Eng Sci, 2000, 55(15): 2895-2905.

    14. [14]

      [14] 屈成锐. O2/CO2气氛下CFB燃煤PM2.5形成机理及其控制的研究. 南京: 东南大学, 2010. (QU Cheng-rui. Investigation on formation mechanisms and control of PM2.5 under O2/CO2 atmosphere during coal combustion in the CFB. Nanjing: Southeast University, 2010.)

    15. [15]

      [15] 屈成锐, 徐斌, 王学涛, 刘建新. O2/CO2气氛燃烧温度对燃煤PM2.5形成的影响[J]. 燃料科学与技术, 2012, 18(5): 410-414. (QU Cheng-rui, XU Bin, WANG Xue-tao, LIU Jian-xin. Effect of combustion temperature on formation of PM2.5 under O2/CO2 atmosphere during coal combustion[J]. J Combust Sci Technol, 2012, 18(5): 410-414.)

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Dan ShaoYujing LyuChengyuan LiuHao WangNing MaHao XuWei YanXiaohua JiaHaojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641

    12. [12]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(0)
  • Abstract views(536)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return