Citation: YANG Ming-ming, LIU Yong-zhuo, JIA Wei-hua, HU Xiu-de, GUO Qing-jie. Preparation and performance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 167-176. shu

Preparation and performance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion

  • Corresponding author: GUO Qing-jie, 
  • Received Date: 14 July 2014
    Available Online: 4 September 2014

    Fund Project: 国家自然科学基金(21276129) (21276129) 韩国能源研究院国际合作项目(B3-2421-06)。 (B3-2421-06)

  • Through mechanical-mixing, impregnating and sol-gel methods, Fe2O3-based oxygen carriers (OC) were prepared with natural attapulgite (ATP) as an inert support and characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), and nitrogen adsorption-desorption measurements. The reactivity of Fe2O3-based oxygen carriers (Fe2O3/ATP OCs) in coal chemical looping combustion (CLC) was investigated in a fluidized-bed reactor at 900 ℃ by using steam as the gasification agent. The results indicated that the surface area and attrition resistance of Fe2O3/ATP OCs are improved significantly by using ATP as the support. Owing the synergy between ATP and Fe2O3, both are catalytic active, carbon conversion is enhanced significantly. ATP is an appropriate support for Fe2O3 oxygen carriers, whereas the sol-gel method gives the carriers best performance. U-Fe4ATP6 prepared by the sol-gel method, with a surface area of 4.920 7 m2/g and Ca content of 4.3%, exhibits much better performance than other two oxygen carriers. When used in CLC, the initial carbon conversion rate reaches 0.168 min-1, with an average CO2 concentration of 98.6% and a combustion efficiency of 98.7%. The catalytic activity of U-Fe4ATP6 is slightly decreased after twenty cycles; the initial carbon conversion rate is decreased to 0.108 min-1 and the residence time (t95) is extended to 18 min, whereas the CO2 capture efficiency and combustion efficiency remain at about 98.6% and 96.7%, respectively.
  • 加载中
    1. [1]

      [1] ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYANP,de DIEGO L F. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust, 2012, 38(2): 215-282.

    2. [2]

      [2] 王保文, 赵海波, 郑瑛, 柳朝晖, 郑楚光, 晏蓉. 惰性载体Al2O3对Fe2O3及CuO氧载体煤化学链燃烧的影响[J]. 中国电机工程学报, 2011, 31(32): 53-61. (WANG Bao-wen, ZHAO Hai-bo, ZHENG Ying, LIU Chao-hui, ZHENG Chu-guang, YAN Rong. Effect of Inert Support Al2O3 on the chemical looping combustion of coal with Fe2O3 and CuO-based oxygen carrier[J]. Proc CSEE, 2011, 31(32): 53-61.)

    3. [3]

      [3] GUO Q, CHENG Y, LIU Y, JIA W, RYU H. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res, 2014, 53(1): 78-86.

    4. [4]

      [4] 程煜, 刘永卓, 田红景, 郭庆杰. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595. (CHENG Yu, LIU Yong-zhuo, TIAN Hong-jing, GUO Qing-jie. Chemical-looping gasification reaction characteristics and mechanism of coal and Fe-based composite oxygen carriers[J]. CIESC J, 2013, 64(7): 2587-2595.)

    5. [5]

      [5] HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations-a review[J]. Chem Eng Sci, 2008, 63(18): 4433-4451.

    6. [6]

      [6] CAO J L, SHAO G S, WANG Y, LIU Y, YUAN Z Y. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catal Commun, 2008, 9(15): 2555-2559.

    7. [7]

      [7] ADANEZ J, de DIEGO L F, GARCIALABINAO F, GAYAN P, ABAD A, PALACIOS J M. Selection of oxygen carriers for chemical looping combustion[J]. Energy Fuels, 2004, 18(2): 371-377.

    8. [8]

      [8] ZHANG J, GUO Q, LIU Y, CHENG Y. Preparation and characterization of Fe2O3/Al2O3 using the solution combustion approach for chemical looping combustion[J]. Ind Eng Chem Res, 2012, 51(39): 12773-12781.

    9. [9]

      [9] 梅道锋, 赵海波, 马兆军, 郑楚光. Fe2O3/Al2O3氧载体制备方法的研究[J]. 燃料化学学报, 2012, 40(7): 795-802. (MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, ZHENG Chu-guang. Preparation method study on Fe2O3/Al2O3 oxygen carrier[J].J Fuel Chem Technol, 2012, 40(7): 795-802.)

    10. [10]

      [10] ASTM D 5757-00, Standard test method for determination of attrition and abrasion of powdered catalysts by air jets[S].

    11. [11]

      [11] MASTELLONE M L, ARENA U. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel[J]. Combust Flame, 1999, 117(3): 562-573.

    12. [12]

      [12] 杨景标, 蔡宁生, 张彦文. 催化剂添加量对褐煤焦水蒸气气化反应性的影响[J]. 燃料化学学报, 2008, 36(1): 15-22. (YANG J B, CAI N S, ZHANG Y W. Effect of catalyst loadings on the gasification reactivity of a lignite char with steam[J]. J Fuel Chem Technol, 2008, 36(1): 15-22.)

    13. [13]

      [13] LI X, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10): 1509-1517.

    14. [14]

      [14] 彭康, 王亦飞, 金渭龙, 吴超琦, 王辅臣. 硝酸钙对内蒙古褐煤热解和气化特性的影响[J]. 燃料化学学报, 2013, 41(2): 144-150. (PENG Kang, WANG Yi-fei, JIN Wei-long, WU Chao-qi, WANG Fu-chen. Effects of calcium nitrate on pyrolysis andgasification behavior of lignite from Inner Mongolia[J]. J Fuel Chem Technol, 2013, 41(2): 144-150.)

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    4. [4]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    11. [11]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    16. [16]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    20. [20]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

Metrics
  • PDF Downloads(0)
  • Abstract views(359)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return