Citation: YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, HE Jin-qiao, LIU Liang, YAN Xiao-zhong. Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 160-166. shu

Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis

  • Corresponding author: YIN Yan-shan, 
  • Received Date: 18 September 2014
    Available Online: 3 December 2014

    Fund Project: 国家自然科学基金(51206012) (51206012) 湖南省自然科学基金(12JJ4051) (12JJ4051) 能源高效清洁利用湖南省高校重点实验室开放基金(2011NGQ005) (2011NGQ005)

  • Two lignocellulosic municipal solid wastes including waste paper and camphor tree leaf were pyrolyzed at temperatures of 500~1 000 ℃ in a horizontal tube furnace. The mineral matter and carbonaceous structure of both municipal solid wastes were characterized by X-ray diffraction (XRD) and Raman spectroscopy, respectively. The evolution of mineral matter and carbonaceous structure during pyrolysis was investigated. The results demonstrate that the original mineral matter in waste paper and camphor tree leaf is principally calcite and weddellite, respectively. Weddellite can completely decompose to calcite below 500 ℃, and then turn to lime above 800 ℃. In addition, Raman spectroscopy is found to be considerably sensitive to the carbonaceous structure of municipal solid wastes. At relatively low temperatures, the macromolecules of municipal solid wastes are subjected to the condensation and depolymerization, resulting in an increase in the amount of isolated sp2 carbon, thus the D1 band full width at half maximum (FWHM) and band area ratio ID1/IG increase with increasing pyrolysis temperature. In contrast, at relatively high temperatures, the D1 band FWHM and ID1/IG decrease, which is attributed to the increase of ordered sp2 carbon. Consequently, the order of carbonaceous structure of both municipal solid wastes shows an initial decrease and then an increase with the increasing of pyrolysis temperature.
  • 加载中
    1. [1]

      [1] 国家环境保护部. 2013年中国环境状况公报[EB/OL]. http://jcs.mep.gov.cn/hjzl/zkgb/2013zkgb/201406/t20140605_276485.htm, 2014-06-05. (Ministry of Enivironmental Protection of the People’s Rupublic of China[EB/OL]. 2013 report on the state of the enivironment in China. http://jcs.mep.gov.cn/hjzl/zkgb/2013zkgb/201406/t20140605_276485.htm, 2014-06-05.)

    2. [2]

      [2] DE SOUZA-SANTOS M L, CERIBELI K. Technical evaluation of a power generation process consuming municipal solid waste[J]. Fuel, 2013, 108: 578-585.

    3. [3]

      [3] 王志奇, 陈勇. 垃圾衍生燃料等温快速热解和燃烧反应特性[J]. 燃料化学学报, 2004, 32(4): 440-445. (WANG Zhi-qi, CHEN Yong. Pyrolysis and combustion characteristics of RDF at isothermal condition[J]. J Fuel Chem Technol, 2004, 32(4): 440-445.)

    4. [4]

      [4] 袁浩然, 鲁涛, 熊祖鸿, 黄宏宇, 小林敬幸, 陈勇, 黎志强. 城市生活垃圾热解气化技术研究进展[J]. 化工进展, 2012, 31(2): 421-427. (YUAN Hao-ran, LU Tao, XIONG Zu-hong, HUANG Hong-yu, KOBAYASHI Noriyuku, CHEN Yong, LI Zhi-qiang. Advance in pyrolysis and gasification of municipal solid waste study[J]. Chem Ind Eng Prog, 2012, 31(2): 421-427.)

    5. [5]

      [5] 李斌, 谷月玲, 严建华, 徐旭, 池涌, 蒋旭光, 倪明江, 岑可法. 城市生活垃圾典型组分的热解动力学模型研究[J]. 环境科学学报, 1999, 19(5): 562-566. (LI Bin, GU Yue-ling, YAN Jian-hua, XU Xu, CHI Yong, JIANG Xu-guang, NI Ming-jiang, CEN Ke-fa. Thermal decomposition kinetics model of the representative composition of municipal solid waste[J]. Acta Sci Circumstantiae, 1999, 19(5): 562-566.)

    6. [6]

      [6] 王艳, 张书廷, 张于峰, 王洋, 邓娜. 城市生活垃圾低温热解产气特性的实验研究[J]. 燃料化学学报, 2005, 33(1): 62-67. (WANG Yan, ZHANG Shu-ting, ZHANG Yu-feng, WANG Yang, DENG Na. Gas formation characteristics during low temperature pyrolysis of municipal household garbage[J]. J Fuel Chem Technol, 2005, 33(1): 62-67.)

    7. [7]

      [7] 李帆, 邱建荣, 郑瑛, 郑楚光. 煤燃烧过程矿物质行为研究[J]. 工程热物理学报, 1999, 20(2): 258-260. (LI Fan, QIU Jian-rong, ZHENG Ying, ZHENG Chu-guang. Study on behavior of mineral matters in coal during burning process[J]. J Eng Thermophysics, 1999, 20(2) : 258-260.)

    8. [8]

      [8] 张守玉, 黄凤豹, 彭定茂, 董刚, 宝田恭之. 低品质生物质的热解及低温催化气化研究[J]. 燃料化学学报, 2013, 41(2): 163-168. (ZHANG Shou-yu, HUANG Feng-bao, PENG Ding-mao, DONG Gang, TAKARADA Takayuki. Pyrolysis and low temperature catalytic gasification of manure[J]. J Fuel Chem Technol, 2013, 41(2): 163-168.)

    9. [9]

      [9] SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.

    10. [10]

      [10] LU L, KONG C, SAHAJWALLA V, HARRIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002, 81(9): 1215-1225.

    11. [11]

      [11] 范晓雷, 杨帆, 张薇, 周志杰, 王辅臣, 于遵宏. 热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J]. 燃料化学学报, 2006, 34(4): 395-398. (FAN Xiao-lei, YANG Fan, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity[J]. J Fuel Chem Technol, 2006, 34(4): 395-398.)

    12. [12]

      [12] LI X, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

    13. [13]

      [13] YAMAUCHI S, KURIMOTO Y. Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: Temperature dependence of Raman parameters[J]. J Wood Sci, 2003, 49(3): 235-240.

    14. [14]

      [14] 柳晓飞, 尤静林, 王媛媛, LU Li-ming, 解迎芳, 余立旺, 伏清. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014, 42(3): 270-276. (LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014, 42(3): 270-276.)

    15. [15]

      [15] 陈港, 刘雅萍, 方志强. 钛白粉-碳酸钙复合填料的制备及在造纸中的应用[J]. 华南理工大学学报(自然科学版), 2011, 39(8): 87-92. (CHEN Gang, LIU Ya-ping, FANG Zhi-qiang. Preparation of calcium carbonate composite filler coated with titanium dioxide and its application in papermaking[J]. J South Chin Univ Technol (Nat Sci Ed), 2011, 39(8): 87-92.)

    16. [16]

      [16] OBOIRIEN B, ENGELBRECHT A, NORTH B, DU CANN V M, VERRYN S, FALCON R. Study on the structure and gasification characteristics of selected South African bituminous coals in fluidised bed gasification[J]. Fuel Process Technol, 2011, 92(4): 735-742.

    17. [17]

      [17] IBARRA J, PALACIOS J, DE ANDRS A M. Analysis of coal and char ashes and their ability for sulphur retention[J]. Fuel, 1989, 68(7): 861-867.

    18. [18]

      [18] SILVA L F O, SAMPAIO C H, GUEDES A, FDEZ-ORTIZ DE VALLEJUELO S, MADARIAGA J M. Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation[J]. Fuel, 2012, 94: 52-63.

    19. [19]

      [19] BAR-ZIV E, ZAIDA A, SALATINO P, SENNECA O. Diagnostics of carbon gasification by Raman microprobe spectroscopy//Proceedings of the Combustion Institute, 2000, 2369-2374.

    20. [20]

      [20] XU M Z, SHENG C D. Influences of the heat-treatment temperature and inorganic matter on combustion characteristics of cornstalk biochars[J]. Energy Fuels, 2012, 26(1): 209-218.

    21. [21]

      [21] JONES S P, FAIN C C, EDIE D D. Structural development in mesophase pitch based carbon fibers produced from naphthalene[J]. Carbon, 1997, 35(10/11): 1533-1543.

    22. [22]

      [22] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.

    23. [23]

      [23] IVLEVA N P, MESSERER A, YANG X, NIESSNER R, POSCHL U. Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system[J]. Environ Sci Technol, 2007, 41(10): 3702-3707.

    24. [24]

      [24] JAWHARI T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565.

    25. [25]

      [25] ISHIMARU K, HATA T, BRONSVELD P, NISHIZAWA T, IMAMURA Y. Characterization of sp2- and sp3-bonded carbon in wood charcoal[J]. J Wood Sci, 2007, 53(5): 442-448.

    26. [26]

      [26] ZICKLER G A, SMARSLY B, GIERLINGER N, PETERLIK H, PARIS O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy[J]. Carbon, 2006, 44(15): 3239-3246.

    27. [27]

      [27] MORGA R. Micro-Raman spectroscopy of carbonized semifusinite and fusinite[J]. Int J Coal Geology, 2011, 87(3/4): 253-267.

    28. [28]

      [28] RHIM Y R, ZHANG D, FAIRBROTHER D H, WEPASNICK K A, LIVI K J, BODNAR R J, NAGLE D C. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature[J]. Carbon, 2010, 48(4): 1012-1024.

    29. [29]

      [29] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20): 14095-14107.

  • 加载中
    1. [1]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    7. [7]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    8. [8]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    9. [9]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    10. [10]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    11. [11]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    12. [12]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    13. [13]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    18. [18]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

Metrics
  • PDF Downloads(0)
  • Abstract views(487)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return