Citation: ZHANG Long, HUANG Zhen-yu, SHEN Ming-ke, WANG Zhi-hua, ZHOU Jun-hu. Effect of different regulative methods on coal ash fusion characteristics[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 145-152. shu

Effect of different regulative methods on coal ash fusion characteristics

  • Corresponding author: HUANG Zhen-yu, 
  • Received Date: 4 October 2014
    Available Online: 19 December 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB214906)。 (973计划, 2012CB214906)

  • 3 ash samples with nearly same chemical compositions were obtained by blending two raw coal ashes and mixing with different additives. There exists obvious difference among the ash fusion temperatures (AFTs) of the three ash samples. Mineral transformation at high temperature (>800 ℃) was studied by SEM-EDX and XRD. The results show that different regulative methods have different impact on AFTs. This is because that the mineral composition at high temperature is related with the type of chemical elements and their occurrence in minerals. Both of them determine the ash fusion characteristics.
  • 加载中
    1. [1]

      [1] VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical-composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995, 45(1): 27-51.

    2. [2]

      [2] 马永静. 矿物学角度研究添加剂对煤灰熔融性的作用及其机理. 太原: 太原理工大学, 2012. (MA Yong-jing. Study the effect of additives on the fusibility of coal ash and its mechanism from a mineralogical point of view. Taiyuan: Taiyuan University of Technology, 2012.)

    3. [3]

      [3] 芦涛, 张雷, 张晔, 丰芸, 李寒旭. 煤灰中矿物质组成对煤灰熔融温度的影响[J]. 燃料化学学报, 2010, 38(1): 23-28. (LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature [J]. J Fuel Chem Technol, 2010, 38(1): 23-28.)

    4. [4]

      [4] 马岩, 黄镇宇, 唐慧儒, 王智化, 周俊虎, 岑可法. 准东煤灰化过程中的矿物演变及矿物添加剂对其灰熔融特性的影响[J]. 燃料化学学报, 2014, 42(1): 20-25. (MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics [J]. J Fuel Chem Technol, 2014, 42(1): 20-25.)

    5. [5]

      [5] WU X, ZHANG Z, CHEN Y, ZHOU T, FAN J, PIAO G, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010, 91(11): 1591-1600.

    6. [6]

      [6] QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999, 78(8): 963-969.

    7. [7]

      [7] BAI Z, BAI J, LI B, LI C, LI W. Influence of coal blending on mineral transformation at high temperatures[J]. Min Sci Technol (China), 2009, 19(3): 300-305.

    8. [8]

      [8] LOLJA S A, HAXHI H, DHIMITRI R, DRUSHKU S, MALJA A. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel, 2002, 81(17): 2257-2261.

    9. [9]

      [9] LIU Y P, WU M G, QIAN J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J]. Thermochim Acta, 2007, 454(1): 64-68.

    10. [10]

      [10] LIU B, HE Q, JIANG Z, XU R, HU B. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013, 105: 293-300.

    11. [11]

      [11] LI H, NINOMIYA Y, DONG Z, ZHANG M. Application of the FactSage to predict the ash melting behavior in reducing conditions[J]. Chin J Chem Eng, 2006, 14(6): 784-789.

    12. [12]

      [12] JAK E. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package[J]. Fuel, 2002, 81(13): 1655-1668.

    13. [13]

      [13] HUGGINS F E, HELBLE J J, SHAH N, ZHAO J, SRINIVASACHAR S, MORENCY J R, LU F, HUFFMAN G P. Forms of occurrence of arsenic in coal and their behavior during coal combustion[J]. Abstracts of Papers of the American Chemical Society, 1993, 205(1): 12.

    14. [14]

      [14] WANG H, QIU P, ZHU Y, WU S, ZHAO W, WU S. Effect of residence time on coal ash behavior at high temperatures in reducing atmosphere[J]. Energy Fuels, 2011, 25(12): 5594-5604.

    15. [15]

      [15] LIN X, IDETA K, MIYAWAKI J, TAKEBE H, WANG Y, YOON S, MOCHIDA I. Study on structural and compositional transitions of coal ash by using NMR[J]. J Coal Sci Eng (China), 2012, 18(1): 80-87.

    16. [16]

      [16] REIFENSTEIN A P, KAHRAMAN H, COIN C, CALOS N J, MILLER G, UWINS P. Behaviour of selected minerals in an improved ash fusion test: Quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite[J]. Fuel, 1999, 78(12): 1449-1461.

    17. [17]

      [17] 许洁, 刘霞, 张庆, 赵锋, 郭庆华, 于广锁, 王辅臣. 高钙山鑫煤灰熔融及黏温特性分析[J]. 中国电机工程学报. 2013, 33(20): 46-51. (XU Jie, LIU Xia, ZHANG Qing, ZHAO Feng, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Research on ash fusibility and viscosity-temperature characteristics of high-calcium shanxin coal ash [J]. Proc CSEE, 2013, 33(20): 46-51.

    18. [18]

      [18] 廖敏, 郭庆华, 梁钦锋, 袁海平, 倪建军, 于广锁. 气化条件下煤灰高温物相变化及其对黏度的影响[J]. 中国电机工程学报, 2010, 30(17): 45-50. (LIAO Min, GUO Qing-hua, LIANG Qin-feng, YUAN Hai-ping, NI Jian-jun, YU Guang-suo. Phase transformation of coal ash at high temperature under gasification conditions and it’s influence on viscosity [J]. Proc CSEE, 2010, 30(17): 45-50.)

    19. [19]

      [19] 俞海淼, 曹欣玉, 周俊虎, 岑可法. 高碱灰渣烧结熔融过程中的物相变化[J]. 煤炭学报, 2007, 32(12): 1316-1319. (YU Hai-miao, CAO Xin-yu, ZHOU Jun-hu, CEN Ke-fa. Phase transformation of high alkaline ash residue on the process of sintering and fusion [J]. J Chin Coal Soc, 2007, 32(12): 1316-1319.)

    20. [20]

      [20] WU X, ZHANG Z, PIAO G, HE X, CHEN Y, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in Chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels, 2009, 23: 2420-2428.

  • 加载中
    1. [1]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    3. [3]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    4. [4]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    9. [9]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    11. [11]

      Xiwen Xing Muyi Guo Zhuoran Hu Shunchun Yao Yao Sun . Context-Driven Teaching with Cue-Guided Reasoning: Taking X-Ray Teaching Practice as an Example. University Chemistry, 2025, 40(7): 141-147. doi: 10.12461/PKU.DXHX202409097

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    14. [14]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    19. [19]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    20. [20]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

Metrics
  • PDF Downloads(0)
  • Abstract views(494)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return