Citation: Andrew O. Odeh. Qualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 129-137. shu

Qualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks

  • Corresponding author: Andrew O. Odeh, 
  • Received Date: 12 August 2014
    Available Online: 30 November 2014

  • This paper analyzes the coal to char stages of char formation of six coals of different ranks by using Fourier transform infrared coupled with attenuated total reflectance (ATR-FTIR). The chars were obtained by coal pyrolysis carried out at temperature range of 450 ~700. The data obtained shows the pragmatic disappearance of the aliphatic hydrogen content with increasing char formation temperature. Numerical evaluation of the spectra enabled the determination of aromaticity, fa. The aromaticity was found to be between 0. 66 ~0. 79 for lignite, 0. 75 ~0. 90 for sub-bituminous, 0. 84 ~1. 00 for low volatile bituminous, 0. 83 ~ 1. 00 for high volatile bituminous, 0. 94 ~1. 00 for semi-anthracite, and 0. 97 ~1. 00 for anthracite respectively. With increasing rank of coal samples, spectra exhibit rising aromaticity and enhanced condensation of aromatic rings, whereas the aliphatic chain lengths decrease.
  • 加载中
    1. [1]

      [1] BISHOP A N, KEARSLEY A T, PATIENCE R L. Analysis of sedimentary organic materials by scanning electron microscopy: The application of backscattered electron imagery and light element X-ray microanalysis[J]. Org Geochem, 1992, 18(4): 431-446.

    2. [2]

      [2] WILSON M A, VASSALLO A M. Developments in high-resolution solid-state 13C NMR spectroscopy of coals[J]. Org Geochem, 1985, 8 (5): 299-312.

    3. [3]

      [3] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95 (5): 19-24. micro-FTIR spectroscopy[J]. Int J Coal Geol, 2012, 104(12): 22-33.

    4. [4]

      [4] LU L, SAHAJWALLA V, KONG C, HARRIS D. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001, 39(12): 1821-1833.

    5. [5]

      [5] RADLINSKI A P, BUSBRIDGE T L, GRAY E M A, BLACH T P, COOKSON D J. Small angle X-ray scattering mapping and kinetics study of sub-critical CO2 sorption by two Australian coals[J]. Int J Coal Geol, 2009, 77(1/ 2): 80-89.

    6. [6]

      [6] KELEMEN S R, GEORGE G N, GORBATY M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals[J]. Fuel, 1990, 69(8): 939-944.

    7. [7]

      [7] TAGHIEI M M, HUGGINS F E, SHAH N, HUFFMAN G P. In situ X-ray absorption fine structure spectroscopy investigation of sulfur functional groups in coal during pyrolysis and oxidation[J]. Energy Fuels, 1992, 6(3): 293-300.

    8. [8]

      [8] TSELEV A, IVANOV I N, LAVRIK N V, BELIANINOV A, JESSE S, MATHEWS J P, MITCHELL G D, KALININ S V. Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy[J]. Fuel, 2014, 126(6): 32-37.

    9. [9]

      [9] CHARLAND J P, MACPHEE J A, GIROUX L, PRICE J T, KHAN M A. Application of TG-FTIR to the determination of oxygen content of coal[J]. Fuel Process Technol, 2003, 81(3): 211-221.

    10. [10]

      [10] GUEDES A, VALENTIM B, PRIETO A C, NORONHA F. Raman spectroscopy of coal macerals and fluidized bed char morphotypes[J]. Fuel, 2012, 97(6): 443-449.

    11. [11]

      [11] LIN X, WANG C, IDETA K, MIYAWAKI J, NISHIYAMA Y, WANG Y, YOON S, MOCHIDA I. Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel, 2014, 118(15): 257-264.

    12. [12]

      [12] CHEN Y, MASTALERZ M, SCHIMMELMANN A. Characterization of chemical functional groups in macerals across different coal ranks via

    13. [13]

      [13] DUN W, GUIJIAN L, RUOYU S, XIANG F. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction[J]. Energy Fuels, 2013, 27(10): 5823-5830.

    14. [14]

      [14] PANG L S K, VASSALLO A M, PHONG-ANANT D, WILSON M A. A study of slag in laboratory, pilot and commercial scale furnaces using FTIR microscopy, electron microscopy and NMR spectroscopy[J]. Fuel Process Technol, 1993, 33(1): 13-32.

    15. [15]

      [15] SHARMA A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel, 1999, 78(10): 1203-1212.

    16. [16]

      [16] MACHADO A S, MEXIAS A S, VILELA A C F, OSORIO E. Study of coal, char and coke fines structures and their proportions in the off- gas blast furnace samples by X-ray diffraction[J]. Fuel, 2013, 114(12): 224-228.

    17. [17]

      [17] ORREGO-RUIZ J A, CABANZO R, MEJÍA-OSPINO E. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy[J]. Int J Coal Geol, 2011, 85(3/ 4): 307-310.

    18. [18]

      [18] SOBKOWIAK M, PAINTER P A. A comparison of drift and KBr pellet methodologies for the quantitative analysis of functional groups in coal by infrared spectroscopy[J]. Energy Fuels, 1995, 9(2): 359-363.

    19. [19]

      [19] SAUCY D A, SIMKO S J, LINTON R W. Comparison of photoacoustic and attenuated total reflectance sampling depths in the infrared region[J]. Anal Chem, 1985, 57(4): 871-875.

    20. [20]

      [20] THOMASSON J, COIN C, KAHRAMAN H, FREDERICKS P M. Attenuated total reflectance infrared microspectroscopy of coal[J]. Fuel, 2000, 79(6): 685-691.

    21. [21]

      [21] STRYDOM C A, BUNT J R. , SCHOBERT H H, RAGHOO M. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes[J]. Fuel Process Technol, 2011, 92(4): 764-770.

    22. [22]

      [22] LI Z, FREDERICKS P M, RINTOUL L, WARD C R. Application of attenuated total reflectance micro-Fourier transform infrared(ATR- FTIR) spectroscopy to the study of coal macerals: Examples from the Bowen Basin, Australia[J]. Int J Coal Geol, 2007, 70(1/ 3): 97-94.

    23. [23]

      [23] COOKE N E, FULLER O M, GAIKWAD R P. FT-i. r. spectroscopic analysis of coal and coal extracts[J]. Fuel, 1986, 65(9): 1254- 1260.

    24. [24]

      [24] CAI M F, SMART R B. Comparison of seven West Virginia coals with their N-Methyl -2-pyrrolidinone-soluble extracts and residues. 1. Diffuse reflectance infrared Fourier transform spectroscopy[J]. Energy Fuels, 1994, 8(2): 369-374.

    25. [25]

      [25] GLOVER G, VAN DER WALT T J, GLASSER D, PRINSLOO N M, HILDEBRANDT D. Drift spectroscopy and optical reflectance of heat-treated coal from a quenched gasifier[J]. Fuel, 1995, 74(8): 1216-1219.

    26. [26]

      [26] IBARRA J V, MOLINER R, BONET A J. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73(6): 918-924.

    27. [27]

      [27] PAINTER P C, SNYDER R W, STARSINIC M, COLEMAN M M, KUEHN D W, DAVIS A. Concerning the application of FT-IR to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs[J]. Appl Spectrosc, 1981, 35(5): 475-485.

    28. [28]

      [28] SALEMA A A, AFZAL M T, MOTASEMI F. Is there synergy between carbonaceous material and biomass during conventional pyrolysis A TG-FTIR approach[J]. J Anal Appl Pyrolysis, 2014, 105(1): 217-226.

    29. [29]

      [29] SOLOMON P R, CARANGELO R M. FT-ir analysis of coal[J]. Fuel, 1988, 67(7): 949-959.

    30. [30]

      [30] EDREIS E M A, LUO G, YAO H. Investigations of the structure and thermal kinetic analysis of sugarcane bagasse char during non-isothermal CO2 gasification[J]. J Anal Appl Pyrolysis, 2014, 107: 107-115.

    31. [31]

      [31] RUSSO C, STANZIONE F, TREGROSSI A, CIAJOLO A. Infrared spectroscopy of some carbon-based materials relevant in combustion: Qualitative and quantitative analysis of hydrogen[J]. Carbon, 2014, 74: 127-138.

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    3. [3]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    6. [6]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    9. [9]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    10. [10]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    11. [11]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    12. [12]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    13. [13]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

Metrics
  • PDF Downloads(0)
  • Abstract views(293)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return