Citation: CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 108-115. shu

Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel

  • Corresponding author: GUO Qing-jie, 
  • Received Date: 31 July 2014
    Available Online: 29 September 2014

    Fund Project: 国家自然科学基金(21276129) (21276129) 山东省自然科学杰出青年基金(JQ 200904). (JQ 200904)

  • A novel tetraethylenepentamine (TEPA) modified mesoporous silica gel (SG) sorbent (TEPA-SG) for CO2 capture was prepared by the wet impregnation method. The prepared samples were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA), and N2 adsorption-desorption technologies. Meanwhile, the effects of TEPA loadings and adsorption temperatures on the adsorption capacity were investigated in a self-assembled fixed bed reactor. Different weight percentages of polyethylene glycol (PEG) were added to TEPA-SG to study the promoting effect of hydroxyl groups on the adsorption capacity and regenerability. The results show that the SG modified by 40% TEPA has a maximum adsorption capacity of 2.21 mmol/g at 70 ℃ and atmospheric pressure. Moreover, the adsorption capacity increases to 2.70 mmol/g by adding a desirable amount of PEG, and after ten cyclic adsorption-desorption tests, the adsorption capacity is maintained at 2.66 mmol/g, demonstrating that as-prepared TEPA and PEG modified sorbent displays an excellent regenerability. In addition, the isosteric heat of adsorption based on the Clasius-Clapeyron equation approaches 30~40 kJ/mol, and decreases gradually with increasing the adsorption capacity, indicating that the surface of TEPA30/PEG10-SG sorbent shows an energetic heterogeneity.
  • 加载中
    1. [1]

      [1] 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离—分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4.(FEI Wei-yang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2-The challenge and opportunity for separation technology[J]. Chem Ind Eng Prog, 2005, 24(1): 1-4.)

    2. [2]

      [2] LI P Z, ZHAO Y L. Nitrogen-rich porous adsorbents for CO2 capture and storage[J]. Chem Asian J, 2013, 8(8): 1680-1691.

    3. [3]

      [3] LIU Y M, YE Q, SHEN M, CHEN J, PAN H, SHI Y. Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions[J]. Environ Sci Technol, 2011, 45(13): 5710-5716.

    4. [4]

      [4] 刘之琳, 滕阳, 张锴, 曹晏, 潘伟平. 不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J]. 燃料化学学报, 2013, 41(4): 469-476.(LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. J Fuel Chem and Technol, 2013, 41(4): 469-476.)

    5. [5]

      [5] MA X L, WANG X X, SONG C S. "Molecular basket" sorbent for separation of CO2 and H2S from various gas streams[J]. J Am Chem Soc, 2009, 131(16): 5777-5783.

    6. [6]

      [6] 李勇, 李磊, 闻霞, 王峰, 赵宁, 肖福魁, 魏伟, 孙予罕. 二次嫁接法制备氨基修饰的硅基二氧化碳吸附剂[J]. 燃料化学学报, 2013, 41(9): 1122-1128.(LI Yong, LI Lei, WEN Xia, WANG Feng, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han. Synthesis of amine modified silica for the capture of carbon dioxide by a twice grafting method[J]. J Fuel Chem Technol, 2013, 41(9): 1122-1128.)

    7. [7]

      [7] SON W J, CHOI J S, AHN W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous Mesoporous Mater, 2008, 113(1/3): 31-40.

    8. [8]

      [8] PLAZA M G, PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. CO2 capture by adsorption with nitrogen enriched carbons[J]. Fuel, 2007, 86(14): 2204-2212.

    9. [9]

      [9] 徐康文, 冯丽娟, 王景刚, 李宇慧, 李春虎. 介孔硅胶在柴油氧化-吸附组合脱硫中的应用研究[J]. 燃料化学学报, 2012, 40(8): 1009-1013.(XU Kang-wen, FENG Li-juan, WANG Jing-gang, LI Yu-hui, LI Chun-hu. Application of mesoporous silica gel in desulfurization of diesel oil via oxidation-adsorption process[J]. J Fuel Chem Technol, 2012, 40(8): 1009-1013.)

    10. [10]

      [10] WANG K, SHANG H Y, LI L, YAN X L, YAN Z F, LIU C G, ZHA Q F. Efficient CO2 capture on low-cost silica gel modified by polyethylenimine[J]. J Nat Gas Chem, 2012, 21(3): 319-323.

    11. [11]

      [11] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, EVERETT D H, HAYNES J H, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure Appl Chem, 1994, 66(8): 1739-1758.

    12. [12]

      [12] DIDAS S A, KULKARNI A R, SHOLL D S, JONES C W. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air[J]. ChemSusChem, 2012, 5(10): 2058-2064.

    13. [13]

      [13] SATYAPAL S, FILBURN T, TRELA J, STRANGE J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications[J]. Energy Fuels, 2001, 15(2): 250-255.

    14. [14]

      [14] YUE M B, SUN L B, CAO Y, WANG Z J, WANG Y, YU Q, ZHU J H. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J]. Microporous Mesoporous Mater, 2008, 114(1): 74-81.

    15. [15]

      [15] YAN W, TANG J, BIAN Z J, HU J, LIU H L. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template[J]. Ind Eng Chem Res, 2012, 51(9): 3653-3662.

    16. [16]

      [16] 史晶金, 刘亚敏, 陈杰, 张瑜, 施耀. 氨基功能化SBA-16对CO2的动态吸附特性[J]. 物理化学学报, 2010, 26(11): 3023-3029.(SHI Jing-jin, LIU Ya-min, CHEN Jie, ZHANG Yu, SHI Yao. Dynamic performance of CO2 dsorption with amine-modified SBA-16[J]. Acta Phys-Chim Sin, 2010, 26(11): 3023-3029.)

    17. [17]

      [17] YAN X L, ZHANG Y, QIAO K, LI X, ZHANG Z Q, YAN Z F, KOMARNENI S. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent[J]. J Hazard Mater, 2011, 192(3): 1505-1508.

    18. [18]

      [18] KHALIL S H, AROUA M H, DAUD W M A W. Study on the improvement of the capacity of amine-impregnated commercial activated carbon beds for CO2 adsorbing[J]. Chem Eng J, 2012, 183: 15-20.

    19. [19]

      [19] 王春蓉. 改性硅胶吸附分离N2/CO2的研究[J]. 化学与粘合, 2009, 31(6): 76-78.(WANG Chun-rong. Study on modified silica gel for adsorptive separation of N2/CO2[J]. Chem Adhesion, 2009, 31(6): 76-78.)

    20. [20]

      [20] ZHU T, YANG S, CHOI D K, ROW K H. Adsorption of carbon dioxide using polythyleneimine modified silica gel[J]. Korean J Chem Eng, 2010, 27(6): 1910-1915.

    21. [21]

      [21] ZHANG Z H, MA X L, WANG D X, SONG C S, WANG Y G. Development of silica-supported polyethylenimine sorbents for CO2 capture from flue gas[J]. AIChE J, 2012, 58(8): 2495-2502.

    22. [22]

      [22] GUERRERO R S, BELMABKHOUT Y, SAYARI A. Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model[J]. Chem Eng J, 2010, 161(1/2): 173-181.

    23. [23]

      [23] 高帅, 郑青榕. 甲烷在活性炭上吸附平衡模型的研究[J]. 燃料化学学报, 2013, 41(3): 380-384.(GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption models for methane adsorption equilibrium on activated carbon[J]. J Fuel Chem Technol, 2013, 41(3): 380-384.)

    24. [24]

      [24] KERAMATI M, GHOREYSHI A A. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine[J]. Physica E, 2014, 57: 161-168.

    25. [25]

      [25] AHN H, MOON J H, HYUN S H, LEE C H. Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets[J]. Adsorption, 2004, 10(2): 111-128.

    26. [26]

      [26] KUMAR K V, DE CASTRO M M, MARTINEZ-ESCANDELL M, MOLINA-SABIO M, RODRIGUEZ-REINOSO F. A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces[J]. Phys Chem Chem Phys, 2011, 13(13): 5753-5759.

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    3. [3]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    4. [4]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    5. [5]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    10. [10]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    11. [11]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(5)
  • Abstract views(963)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return