Citation: WANG Xia, CHEN Hao, QU Ru-min, ZHANG Lin, YANG Lin-jun. Effects of the coexistent impurities in the flue gas on CO2 separation by membranes[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 100-107. shu

Effects of the coexistent impurities in the flue gas on CO2 separation by membranes

  • Corresponding author: YANG Lin-jun, 
  • Received Date: 21 August 2014
    Available Online: 24 September 2014

    Fund Project: 国家自然科学基金(51176034). (51176034)

  • The effects of coexistent gaseous components and fine particles on the CO2 separation performance by polydimethylsiloxane/polysulfon (PDMS-PSF) flat sheet composite membranes were investigated in a simulated test-bed. It can be found that O2 slightly inhibits the CO2 separation performance, while the effect of SO2 is negligible during the test time due to its low concentration in the flue gas. Water vapor promotes the CO2 separation performance of PDMS-PSF composite membranes. The fly ash fine particles significantly deteriorate the CO2 separation performance of PDMS-PSF membranes. Moreover, the CO2 separation experiments by PDMS-PSF membranes with an actual flue gas from a desulfurization system of the coal-fired hot testing facility were conducted for 50 h. At the beginning, the CO2 separation performance is slightly improved due to the combined effect of water vapor, O2 and SO2. With the extension of the test time, the impact of the fine particles deposited on the membrane surface increases, which gradually deteriorates the CO2 separation performance of PDMS-PSF membrane. The CO2/N2 selectivity and the CO2 permeation rate are decreased by 17.91% and 28.21%, respectively.
  • 加载中
    1. [1]

      [1] 刘之琳, 滕阳, 张锴, 曹晏, 潘伟平. 不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J]. 燃料化学学报, 2013, 41(4): 469-476.(LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. J Fuel Chem Technol, 2013, 41(4): 469-476.)

    2. [2]

      [2] LOW B T, ZHAO L, MERKEL T C, WEBER M, STOLTEN D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas[J]. J Membr Sci, 2013, 431: 139-155.

    3. [3]

      [3] 谭喆, 周勇, 高从堦. 优先渗透CO2的膜材料研究进展[J]. 膜科学与技术, 2014, 34(1): 121-128.(TAN Zhe, ZHOU Yong, GAO Cong-jie. Progress of research on membrane materials for CO2-selective separation[J]. Membr Sci Technol, 2014, 34(1): 121-128.)

    4. [4]

      [4] AHMAD F, LAU K K, SHARIFF A M, MURSHID G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas[J]. Comput Chem Eng, 2012, 36: 119-128.

    5. [5]

      [5] ISMAIL A F, YAACOB N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system[J]. J Membr Sci, 2006, 275(1): 151-165.

    6. [6]

      [6] 马莎莎, 陈泽智, 龚慧娟, 虞辉, 余珉, 王梦秋, 樊杨梅. 聚壳糖/聚砜复合中空纤维膜的制备及其CO2/N2分离性能研究[J]. 现代化工, 2013, 33(6): 50-53.(MA Sha-sha, CHEN Ze-zhi, GONG Hui-juan, YU Hui, YU Min, WANG Meng-qiu, FAN Yang-mei. Preparation of chitosan/polysulfon hollow fiber composite membranes and its CO2/N2 permeation properties[J]. Mod Chem Ind, 2013, 33(6): 50-53.)

    7. [7]

      [7] PAKIZEH M, MANSOORI S A A, CHENAR M P, MAHBOUB M N. Modification of PSf membrane nanostructure using different fabrication parameters and investigation of the CO2 separation properties of PDMS-coated PSf composite membranes[J]. Braz J Chem Eng, 2013, 30(2): 345-354.

    8. [8]

      [8] THUNDYIL M J, JOIS Y H, KOROS W J. Effect of permeate pressure on the mixed gas permeation of carbon dioxide and methane in a glassy polyimide[J]. J Membr Sci, 1999, 152(1): 29-40.

    9. [9]

      [9] SCHOLES C A, STEVENS G W, KENTISH S E. Permeation through CO2 selective glassy polymeric membranes in the presence of hydrogen sulfide[J]. AlChE J, 2012, 58(3): 967-973.

    10. [10]

      [10] SCHOLES C A, KENTISH S E, STEVENS G W. The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture[J]. Energy Procedia, 2009, 1(1): 311-317.

    11. [11]

      [11] KIM T J, UDDIN M W, SANDRU M, HÄGG M B. The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes[J]. Energy Procedia, 2011, 4: 737-744.

    12. [12]

      [12] ANDERSON C J, TAO W, SCHOLES C A, STEVENS G W, KENTISH S E. The performance of carbon membranes in the presence of condensable and non-condensable impurities[J]. J Membr Sci, 2011, 378(1/2): 117-127.

    13. [13]

      [13] BRANDS K, UHLMANN D, SMART S, BRAM M, DINIZ DA COSTA J C. Long-term flue gas exposure effects of silica membranes on porous steel substrate[J]. J Membr Sci, 2010, 359(1): 110-114.

    14. [14]

      [14] BRAM M, BRANDS K, DEMEUSY T, ZHAO L, MEULENBERG W A, PAULS J, GÖTTLICHER G, PEINEMANN K V, SMART S, BUCHKREMER H P, STÖVER D. Testing of nanostructured gas separation membranes in the flue gas of a post-combustion power plant[J]. Int J Greenh Gas Control, 2011, 5(1): 37-48.

    15. [15]

      [15] 王学松. 气体膜技术[M]. 北京: 化学工业出版社, 2010.(WANG Xue-song. Membrane technologies for gas separation[M]. Beijing: Chemical Industry Press, 2010.)

    16. [16]

      [16] SCHOLES C A, KENTISH S E, STEVENS G W. Effects of minor components in carbon dioxide capture using polymerics gas separation membranes[J]. Sep Purif Rev, 2009, 38(1): 1-44.

    17. [17]

      [17] 陈勇, 王从厚, 吴鸣. 气体膜分离技术与应用[M]. 北京: 化学工业出版社, 2004.(CHEN Yong, WANG Cong-hou, WU Ming. Membrane technologies and applications for gas separation[M]. Beijing: Chemical Industry Press, 2004.)

    18. [18]

      [18] 何宏舟, 骆仲泱, 王勤辉, 岑可法. 燃烧福建无烟煤的循环流化床锅炉飞灰及其未燃炭分析[J]. 燃料化学学报, 2006, 34(3): 285-291.(HE Hong-zhou, LUO Zhong-yang, WANG Qin-hui, CEN Ke-fa. Characterization of fly ash and unburned carbon from CFB boiler with burning Fujian anthracite[J]. J Fuel Chem Technol, 2006, 34(3): 285-291.)

    19. [19]

      [19] 殷立宝, 高正阳, 徐齐胜, 郑双清, 钟俊, 陈传敏. 燃煤电站锅炉颗粒Hg形态及其释放动力学参数[J]. 燃料化学学报, 2013, 41(12): 1451-1458.(YIN Li-bao, GAO Zheng-yang, XU Qi-sheng, ZHENG Shuang-qing, ZHONG Jun, CHEN Chuan-min. Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler[J]. J Fuel Chem Technol, 2013, 41(12): 1451-1458.)

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    3. [3]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    19. [19]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    20. [20]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

Metrics
  • PDF Downloads(0)
  • Abstract views(802)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return