Citation:
HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(1): 94-99.
-
The TiO2 photocatalyst loaded with 1% Pt, Pd, Au, Ag have been prepared by photo deposition method. The catalysts are characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectrometer. The electro-catalytic performance for hydrogen production and photo electrochemical performance are investigated by using linear sweep voltammetry method and continuous transient current-time response method. The performance of photocatalytic CO2 reduction on TiO2 loaded with different noble metals are discussed. The results show that loading noble metal on TiO2 can significantly accelerate the separation of photo production electron and hole and reduce the recombination rate. Furthermore, the sequence of cocatalysts selective reduction for CO2 is Ag>Au>Pd>Pt. A negative correlation between the selectivity of CO2 hydrogenation and hydrogen production has been discovered. The cocatalyst which has advantage to hydrogen evolution process goes against the selectivity of CO2 hydrogenation.
-
Keywords:
- cocatalyst,
- TiO2,
- photocatalysis,
- CO2 reduction
-
-
-
[1]
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
-
[2]
[2] INOUE T, FUJISHIMA A, KONISHI S, HONDA K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638.
-
[3]
[3] NAVALÓN S, DHAKSHINAMOORTHY A, ÁLVARO M, GARCIA H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides[J]. ChemSusChem, 2013, 6(4): 562-577.
-
[4]
[4] HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew Chem Int Ed, 2013, 52(29): 7372-7408.
-
[5]
[5] ZHAI Q G, XIE S J, FAN W Q, ZHANG Q H, WANG Y, DENG W P, WANG Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(i) oxide co-catalysts with a core-shell structure[J]. Angew Chem Int Ed, 2013, 52(22): 5776-5779.
-
[6]
[6] TU W G, ZHOU Y, ZOU Z G. Photoconversion: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects[J]. Adv Mat, 2014, 26(27): 4598-4598.
-
[7]
[7] IIZUKA K, WATO T, MISEKI Y, SAITO K, KUDO A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15(A=Ca, Sr, and Ba) using water as a reducing reagent[J]. J Am Chem Soc, 2011, 133(51): 20863-20868.
-
[8]
[8] ZHOU H, GUO J J, LI P, FAN T X, ZHANG D, YE J H. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels[J]. Sci Rep, 2013, 3: 1667.
-
[9]
[9] HE J H, ICHINOSE I, KUNITAKE T, NAKAO A. In situ synthesis of noble metal nanoparticles in ultrathin TiO2-Gel films by a combination of ion-exchange and reduction processes[J]. Langmuir, 2002, 18(25): 10005-10010.
-
[10]
[10] LIU Z W, HOU W B, PAVASKAR P, AYKOL M, CRONIN S B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination[J]. Nano Lett, 2011, 11(3): 1111-1116.
-
[11]
[11] YUI T, KAN A, SAITOH C, KOIKE K, IBUSUKI T, ISHITANI O. Photochemical reduction of CO2 Using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2[J]. Acs Appl Mat Int, 2011, 3(7): 2594-2600.
-
[12]
[12] INDRAKANTI V P, KUBICKI J D, SCHOBERT H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook[J]. Energy Environ Sci, 2009, 2(7): 745-758.
-
[13]
[13] IKEDA S, TAKAGI T, ITO K. Selective formation of formic-acid, oxalic-acid, and carbon-monoxide by electrochemical reduction of carbon-dioxide[J]. Bull Chem Soc Jpn, 1987, 60(7): 2517-2522.
-
[14]
[14] YANG J H, WANG D G, HAN H X, LI C.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46(8): 1900-1909.
-
[15]
[15] PETERSON A A, NORSKOV J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. J Phys Chem Lett, 2012, 3(2): 251-258.
-
[16]
[16] HORI Y, WAKEBE H, TSUKAMOTO T, KOGA O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal-electrodes in aqueous-media[J]. Electrochim Acta, 1994, 39(11/12): 1833-1839.
-
[17]
[17] WANG W N, AN W J, RAMALINGAM B, MUKHERJEE S, NIEDZWIEDZKI D M, GANGOPADHYAY S, BISWAS P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. J Am Chem Soc, 2012, 134(27): 11276-11281.
-
[1]
-
-
-
[1]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[4]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[5]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[6]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[7]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[8]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[9]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[10]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[11]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[14]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[16]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[17]
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
-
[18]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[19]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(533)
- HTML views(78)