Citation: HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 94-99. shu

Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction

  • Corresponding author: WANG Zhi-jian,  ZHU Zhen-ping, 
  • Received Date: 25 September 2014
    Available Online: 22 October 2014

    Fund Project: 国家自然科学基金(21173250). (21173250)

  • The TiO2 photocatalyst loaded with 1% Pt, Pd, Au, Ag have been prepared by photo deposition method. The catalysts are characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectrometer. The electro-catalytic performance for hydrogen production and photo electrochemical performance are investigated by using linear sweep voltammetry method and continuous transient current-time response method. The performance of photocatalytic CO2 reduction on TiO2 loaded with different noble metals are discussed. The results show that loading noble metal on TiO2 can significantly accelerate the separation of photo production electron and hole and reduce the recombination rate. Furthermore, the sequence of cocatalysts selective reduction for CO2 is Ag>Au>Pd>Pt. A negative correlation between the selectivity of CO2 hydrogenation and hydrogen production has been discovered. The cocatalyst which has advantage to hydrogen evolution process goes against the selectivity of CO2 hydrogenation.
  • 加载中
    1. [1]

      [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

    2. [2]

      [2] INOUE T, FUJISHIMA A, KONISHI S, HONDA K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638.

    3. [3]

      [3] NAVALÓN S, DHAKSHINAMOORTHY A, ÁLVARO M, GARCIA H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides[J]. ChemSusChem, 2013, 6(4): 562-577.

    4. [4]

      [4] HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew Chem Int Ed, 2013, 52(29): 7372-7408.

    5. [5]

      [5] ZHAI Q G, XIE S J, FAN W Q, ZHANG Q H, WANG Y, DENG W P, WANG Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(i) oxide co-catalysts with a core-shell structure[J]. Angew Chem Int Ed, 2013, 52(22): 5776-5779.

    6. [6]

      [6] TU W G, ZHOU Y, ZOU Z G. Photoconversion: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects[J]. Adv Mat, 2014, 26(27): 4598-4598.

    7. [7]

      [7] IIZUKA K, WATO T, MISEKI Y, SAITO K, KUDO A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15(A=Ca, Sr, and Ba) using water as a reducing reagent[J]. J Am Chem Soc, 2011, 133(51): 20863-20868.

    8. [8]

      [8] ZHOU H, GUO J J, LI P, FAN T X, ZHANG D, YE J H. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels[J]. Sci Rep, 2013, 3: 1667.

    9. [9]

      [9] HE J H, ICHINOSE I, KUNITAKE T, NAKAO A. In situ synthesis of noble metal nanoparticles in ultrathin TiO2-Gel films by a combination of ion-exchange and reduction processes[J]. Langmuir, 2002, 18(25): 10005-10010.

    10. [10]

      [10] LIU Z W, HOU W B, PAVASKAR P, AYKOL M, CRONIN S B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination[J]. Nano Lett, 2011, 11(3): 1111-1116.

    11. [11]

      [11] YUI T, KAN A, SAITOH C, KOIKE K, IBUSUKI T, ISHITANI O. Photochemical reduction of CO2 Using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2[J]. Acs Appl Mat Int, 2011, 3(7): 2594-2600.

    12. [12]

      [12] INDRAKANTI V P, KUBICKI J D, SCHOBERT H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook[J]. Energy Environ Sci, 2009, 2(7): 745-758.

    13. [13]

      [13] IKEDA S, TAKAGI T, ITO K. Selective formation of formic-acid, oxalic-acid, and carbon-monoxide by electrochemical reduction of carbon-dioxide[J]. Bull Chem Soc Jpn, 1987, 60(7): 2517-2522.

    14. [14]

      [14] YANG J H, WANG D G, HAN H X, LI C.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46(8): 1900-1909.

    15. [15]

      [15] PETERSON A A, NORSKOV J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. J Phys Chem Lett, 2012, 3(2): 251-258.

    16. [16]

      [16] HORI Y, WAKEBE H, TSUKAMOTO T, KOGA O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal-electrodes in aqueous-media[J]. Electrochim Acta, 1994, 39(11/12): 1833-1839.

    17. [17]

      [17] WANG W N, AN W J, RAMALINGAM B, MUKHERJEE S, NIEDZWIEDZKI D M, GANGOPADHYAY S, BISWAS P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. J Am Chem Soc, 2012, 134(27): 11276-11281.

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    11. [11]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    14. [14]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    20. [20]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(0)
  • Abstract views(533)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return