Citation: ZHANG Ming-hui, MA Qiang, XU Chao-qun, ZHU Yan-qun, ZHOU Jun-hu. Simultaneous removal of NOx and SO2 from glass furnace flue gas by ozone oxidation and spray tower[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 88-93. shu

Simultaneous removal of NOx and SO2 from glass furnace flue gas by ozone oxidation and spray tower

  • Corresponding author: ZHU Yan-qun, 
  • Received Date: 11 July 2014
    Available Online: 29 September 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB214906). (973计划, 2012CB214906)

  • The experiment on simultaneous removal of NOx and SO2 from glass furnace flue gas by ozone oxidation and spray tower was carried out. The experimental results show that the concentration of the sodium hydroxide as the spray solution has less effect on NOx removal efficiency when pH is above 10, but SO2 in the flue gas greatly enhances the NOx removal. The NOx removal efficiency reaches 70% and the SO2 removal efficiency remains above 99% as the concentration of sodium hydroxide (NaOH) is 0.5% and the O3/NO mol ratio is 1.6. When sodium sulfide (Na2S) is added into the spray solution, the NOx removal efficiency is improved and increases with the concentration of Na2S. During this process, SO2 has no obvious influence on the NOx removal; the NOx removal efficiency reaches 70% and the SO2 removal efficiency remains above 95% as the concentration of NaOH and Na2S is 0.5% and 0.6%, respectively, and the O3/NO mol ratio is 1.2. Long-running experiments (60 min) indicate that NO is transformed into NO2- in the solution and the NOx removal efficiency does not change with the pH value of the spray solution.
  • 加载中
    1. [1]

      [1] 贾世昌. 浮法玻璃窑炉SCR脱硝技术的应用[J]. 环境科技, 2012, 25(1): 49-52.(JIA Shi-chang. Float glass furnace SCR DeNOx technology and instrument[J]. Environ Sci Technol, 2012, 25(1): 49-52.)

    2. [2]

      [2] 陈培国. 玻璃窑炉烟气脱硝SCR反应控制系统设计与研究[D]. 南京: 南京理工大学, 2012: 1, 2.(CHEN Pei-guo. The design and study of SCR control system of glass furnace flue gas[D]. Nanjing: Nanjing University of Science and Technology, 2012: 1, 2.)

    3. [3]

      [3] GB26453—2011, 平板玻璃工业大气污染物排放标准[S].(GB26453—2011, Emission standard of air pollutants for flat glass industry[S].)

    4. [4]

      [4] 徐娇霞, 丁明, 尤振丰, 夏建萍. 玻璃窑炉烟气脱硫脱硝除尘一体化技术探讨[J]. 玻璃, 2013, 5: 43-45.(XU Jiao-xia, DING Ming, YOU Zhen-feng, XIA Jian-ping. Discussion on integrated technique of desulphurization, denitration, and dust abatement technology of flue gas of glass furnace[J]. Glass, 2013, 5: 43-45.)

    5. [5]

      [5] 王雁林. 天然气浮法玻璃窑炉烟气除尘脱硝技术研究[J]. 中国高新技术企业, 2010, 16: 85-87.(WANG Yan-lin. The technology of SCR on floating glass furnace using natural gas[J]. China High Tech Enterpr, 2010, 16: 85-87.)

    6. [6]

      [6] 祝社民, 李伟峰. 烟气脱硝技术研究新进展[J]. 环境污染与防治, 2005, 27(9): 699-703.(ZHU She-min, LI Wei-feng. New development of controlling NOx pollution from plue gas[J]. Environ Pollut Control, 2005, 27(9): 699-703.)

    7. [7]

      [7] WANG Z H, ZHOU J H, ZHU Y Q, WEN Z C, LIU J Z, CEN K F. Simultaneous removal of NOx,SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J]. Fuel Process Technol, 2007, 88(8): 817-823.

    8. [8]

      [8] 张相. 臭氧结合钙基吸收多种污染物及副产物提纯的试验与机理研究[D]. 杭州: 浙江大学, 2012: 47-74.(ZHANG Xiang. Experimental and mechanism investigation on multi-pollutant absorption by ozone with calcium based scrubbing and by-product treatment[D]. Hangzhou: Zhejiang University, 2012: 47-74.)

    9. [9]

      [9] 王智化. 燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D]. 杭州: 浙江大学, 2005: 91-92.(WANG Zhi-hua. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow[D]. Hangzhou: Zhejiang University, 2005: 91-92.)

    10. [10]

      [10] 尹海滨, 陈学功. 天然气浮法玻璃窑炉SCR脱硝技术工艺与应用[J]. 江苏建材, 2011, (3): 20-22.(YIN Hai-bin, CHEN Xue-gong. The technology and application of SCR on floating glass furnace using natural gas[J]. Jiangsu Build Mater, 2011, (3): 20-22.)

    11. [11]

      [11] TAKEUCHI H, ANDO M, KIZAWA N. Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions[J]. Ind Eng Chem Process Des Dev, 1977, 16(3): 303-308.

    12. [12]

      [12] 张相, 朱燕群, 王智化, 张莉莉, 周俊虎, 岑可法. 臭氧氧化多种污染物协同脱及副产物提纯的试验研究[J]. 工程热物理学报, 2012, 33(7): 1259-1262.(ZHANG Xiang, ZHU Yan-qun, WANG Zhi-hua, ZHANG Li-li, ZHOU Jun-hu, CEN Ke-fa. Experimental research for multi-pollution control by ozone and by-product purification[J]. J Eng Thermophysics, 2012, 33(7): 1259-1262.)

    13. [13]

      [13] MOK Y S. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NO removal from exhaust gas[J]. Chem Eng J, 2006, 118(1/2): 63-67.

    14. [14]

      [14] MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique[J]. Fuel Process Technol, 2006, 87: 591-597.

  • 加载中
    1. [1]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    2. [2]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    9. [9]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    18. [18]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

Metrics
  • PDF Downloads(0)
  • Abstract views(477)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return