Citation: DAI Nan, YANG Zhen, HUANG Yao-bing, FU Yao. Preparation of liquid fuel from lignin phenolic monomers[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 48-53. shu

Preparation of liquid fuel from lignin phenolic monomers

  • Corresponding author: FU Yao, 
  • Received Date: 30 June 2014
    Available Online: 27 September 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB215306,2013CB228103) (973计划, 2012CB215306,2013CB228103) 国家自然科学基金(21325208,21361140372,21172209) (21325208,21361140372,21172209) 教育部中央高校基本科研业务费专项(WK2060190025) (WK2060190025) 高等学校博士点基金(20123402130008) (20123402130008)中国科学院基金(KJSTBZ2-EW-J02) (KJSTBZ2-EW-J02)

  • Long-chain alkanes fuel were produced from lignin deploymerization model compounds by introducing small intermediate molecules through Friedel-Crafts alkylation and subsequent hydrogenation. The effect of catalyst, small intermediate molecules, temperature, reaction time, feed mixture ratio, and raw materials on the conversion of the lignin phenolic monomers to dimmers was investigated; after that, the C13~19 alkanes fuel was obtained by hydrogenating the lignin phenolic dimers. The results showed that over Amberlyst-15 catalyst, with a n(guaiacol)/n(small intermediate molecules) ratio of 15:3, after reaction under 100 ℃ for 24 h, the yield of lignin phenolic dimers products reaches 68%; the lignin phenolic dimers can be further converted to alkanes completely through hydrogenation. Such a route for producing long-chain fuel may provide a new alternative for the utilization of lignin.
  • 加载中
    1. [1]

      [1] JIANG J, YU J, CORMA A. Extra-large-pore zeolites: Bridging the gap between micro and mesoporous structures[J]. Angew Chem Int Ed, 2010, 49(18): 3120-3145.

    2. [2]

      [2] SUN J, BONNEAU C, CANTIN A, CORMA A, DIAZ-CABANÑAS M J, MOLINER M, ZHANG D, LI M, ZOU X. The ITQ-37 mesoporous chiral zeolite[J]. Nature, 2009, 458(7242): 1154-1157.

    3. [3]

      [3] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.

    4. [4]

      [4] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.

    5. [5]

      [5] WYMAN C E, DALE B E, ELANDER R T, HOLTZAPPLE M, LADISCH M R, LEE Y Y. Coordinated development of leading biomass pretreatment technologies[J]. Bioresour Technol, 2005, 96(18): 1959-1966.

    6. [6]

      [6] MCCARTHY J L, ISLAM A. Lignin chemistry, technology, and utilization: A brief history[C]//ACS Symposium Series. Washington, DC; American Chemical Society, 1999, 742: 2-99.

    7. [7]

      [7] NIMMANWUDIPONG T, RUNNEBAUM R C, BLOCK D E, GATES B C. Catalytic reactions of guaiacol: Reaction network and evidence of oxygen removal in reactions with hydrogen[J]. Catal Lett, 2011, 141(6): 779-783.

    8. [8]

      [8] HOCKING M B. Vanillin: Synthetic flavoring from spent sulfite liquor[J]. J Chem Educ, 1997, 74(9): 1055.

    9. [9]

      [9] 冯君锋, 蒋剑春, 徐俊明, 贺小亮. 生物质加压液化制备甲基糖苷与酚类物质[J]. 燃料化学学报, 2014, 42(4): 434-442.(FENG Jun-feng, JIANG Jian-chun, XU Jun-ming, HE Xiao-liang. Preparation of methyl glucosides and phenols through the liquefaction of biomass with methanol under high pressure[J]. J Fuel Chem Technol, 2014, 42(4): 434-442.)

    10. [10]

      [10] SERGEEV A G, HARTWIG J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science, 2011, 332(6028): 439-443.

    11. [11]

      [11] HU L H, ZHOU Y H, LIU R J, ZHANG M. Progress of production of phenolic compounds via oxidative degradtion of lignin[J]. Biom Chem Eng, 2012, 46(1): 23-33.

    12. [12]

      [12] ZAKZESKI J, BRUIJNINSTBZ P C, JONGERIUS A L, WECKHUYSEN B M. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev, 2010, 110(6): 3552-3599.

    13. [13]

      [13] 于玉肖, 徐莹, 王铁军, 马隆龙, 张琦, 张兴华, 张雪. 木质素降解模型化合物愈创木酚及苯酚原位加氢制备环己醇[J]. 燃料化学学报, 2013, 41(04): 443-448.(YU Yu-xiao, XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, ZHANG Xing-hua, ZHANG Xue. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. J Fuel Chem Technol, 2013, 41(4): 443-447.)

    14. [14]

      [14] ZHAO C, KOU Y, LEMONIDOU A A, LI X, LERCHER J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angew Chem Int Ed, 2009, 121(22): 4047-4050.

    15. [15]

      [15] MEYLEMANS H A, GROSHENS T J, HARVEY B G. Synthesis of renewable bisphenols from creosol[J]. ChemSusChem 2012, 5(1): 206-210.

    16. [16]

      [16] ZHAO C, LERCHER J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions[J]. Angew Chem Int Ed, 2012, 124(24): 6037-6042.

    17. [17]

      [17] ZHAO C, HE J, LEMONIDOU A A, LI X, LERCHER J A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. J Catal, 2011, 280(1): 8-16.

    18. [18]

      [18] WANG X, RINALDI R. Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions[J]. Energy Environ Sci, 2012, 5(8): 8244-8260.

    19. [19]

      [19] NOUAILHAS H, AOUF C, LE GUERNEVE C, CAILLOL S, BOUTEVIN B, FULCRAND H. Synthesis and properties of biobased epoxy resins. Part 1. Glycidylation of flavonoids by epichlorohydrin[J]. J Polym Sci Part A: Polym Chem, 2011, 49(10): 2261-2270.

    20. [20]

      [20] HUANG Y B, YANG Z, DAI J J, GUO Q X, FU Y. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C-C bond formation of furfural, 5-methylfurfural and aromatic aldehyde[J]. RSC Adv, 2012, 2(30): 11211-11214.

    21. [21]

      [21] YADAV G D, KIRTHIVASAN N. Synthesis of bisphenol-A: Comparison of efficacy of ion exchange resin catalysts vis-à-vis heteropolyacid supported on clay and kinetic modelling[J]. Appl Catal A: Gen, 1997, 154(1): 29-53.

  • 加载中
    1. [1]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    14. [14]

      Chengtian Liang Boyuan Zheng Ning Fang . 第38届中国化学奥林匹克(初赛)配位化学试题解析. University Chemistry, 2025, 40(8): 394-400. doi: 10.12461/PKU.DXHX202410054

    15. [15]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    16. [16]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    17. [17]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(2)
  • Abstract views(727)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return