Citation: CHEN Fan-min, WANG Jia-rui, ZHAO Bing, LI Xiao-jiang, QIN Tao. Effect of mineral form in coal on combustion characteristics and fusibility of coal ash[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 27-33. shu

Effect of mineral form in coal on combustion characteristics and fusibility of coal ash

  • Corresponding author: WANG Jia-rui, 
  • Received Date: 31 July 2014
    Available Online: 17 October 2014

    Fund Project: 国家科技部国际科技合作项目(2013DFG61490) (2013DFG61490) 浙江省钱江人才项目(2013R10080). (2013R10080)

  • The existence form of minerals in Wucaiwan(WCW) coal were studied by extraction, XRD, SEM-EDX and ICP-OES. The influences of different forms of mineral on the combustion characteristics and the fusibility of ash were evaluated. The results indicate that the original minerals in WCW coal mainly include calcite, anhydrite, kaolinite, quartz and pyrite. The modes of occurrence of sodium in WCW coal are mainly in the form of water-soluble sodium. The organic bound sodium, magnesium and calcium can promote the combustion of coal to a certain extent. The fusibility of WCW coal ash is mainly influenced by the mol ratio of iron to calcium. The ash melting points decreases with increasing the Fe2O3/CaO mol ratio.
  • 加载中
    1. [1]

      [1] 卢远梅. 掺配五彩湾煤对乌鲁木齐主要电厂配烧的影响研究[J]. 煤质技术, 2011, 1: 10-12.(LU Yuan-mei. Study on the effect of mix-burning with Wucaiwan coal in main power plants in Urumuqi[J]. Coal Qual Technol, 2011, 1: 10-12.)

    2. [2]

      [2] 杨忠灿, 刘家利, 何红光. 新疆准东煤特性研究及其锅炉选型[J]. 中国电力, 2010, 39(3): 38-40.(YANG Zhong-chan, LIU Jia-li, HE Hong-guang. Study on propertites and boiler lectotype of Zhundong coal in Xinjiang[J]. Electr Power, 2010, 39(3): 38-40.)

    3. [3]

      [3] LEE Y. CCSEM analysis of mineral in pulverized coal and ash formation modeling[D]. Newcastle: The University of Newcastle, Australia, 2000.

    4. [4]

      [4] 陈川, 张守玉, 刘大海, 郭熙, 董爱霞, 熊绍武, 施大钟, 吕俊复. 新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J]. 燃料化学学报, 2013, 41(7): 832-838.(CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LU Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013, 41(7): 832-838.)

    5. [5]

      [5] CARPENTER A M, NIKSA S, SCOTT D H, WU Z. Effects of coal ash on combustion systems[R]. IEA Clean Coal Centre, 2005.

    6. [6]

      [6] MAES I I, GRYLEWICZ G, YPERMAN J, FRANCO D V, MULLENS J, VAN POUCKE L C. Effect of calcium and calcium minerals in coal on its thermal analysis[J]. Fuel, 1997, 76(2): 143-147.

    7. [7]

      [7] CHO E H, LUO Q. Coal oxidation and calcium loading on oxidized coal[J]. Fuel Process Technol, 1996, 46(1): 25-39.

    8. [8]

      [8] LI C Z, SATHE C, KERSHAW J R, PANG Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3/4): 427-438.

    9. [9]

      [9] BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5): 759-764.

    10. [10]

      [10] 孟华平. 煤焦表面含氧官能团对甲烷分解反应的催化作用[D]. 太原: 太原理工大学, 2008.(MENG Hua-ping. The catalytic effect of oxygen-containing groups in coal char surface on methane decomposition reaction[D]. Taiyuan: Taiyuan University of Technology, 2008.)

    11. [11]

      [11] 孙学信. 燃煤锅炉燃烧试验技术与方法[M]. 北京: 中国电力出版社, 2001.(SUN Xue-xin. Experimental techniques and methods of coal-fired boiler combustion[M]. Beijing: Chinese Power Press, 2008.)

    12. [12]

      [12] ERICH R. Mineral impurities in coal combustion[M]. Washington: Hemisphere Publishing Corporation, 1985: 97-101.

    13. [13]

      [13] 赵晓辉. 基于矿物质赋存形态与转变过程的炉内灰渣沉积研究[D]. 杭州: 浙江大学, 2007.(ZHAO Xiao-hui. Study on ash deposition in boiler based on modes of occurrence and transformation of mineral matters[D]. Hangzhou: Zhejiang University, 2007.)

    14. [14]

      [14] SWANSON M L. Modeling of ash properties in advanced coal-based power systems[D]. Grand Forks: University of North Dakota, 2000.

    15. [15]

      [15] MATSUOKA K, ROSYADI E, TOMITA A. Mode of occurrence of calcium in various coals[J]. Fuel, 2002, 81(11/12): 1433-1438.

    16. [16]

      [16] 何方, 王华, 包桂蓉, 胡建杭. 生物质复合型煤固硫特性研究[J]. 热能动力工程, 2002, 17(1): 40-42.(HE Fang, WANG Hua, BAO Gui-rong, HU Jian-hang. A study of the sulfur retention characteristics of biomass compound type of coal[J]. J Eng Therm Energy Power, 2002, 17(1): 40-42.)

    17. [17]

      [17] 刘小伟, 徐明厚, 姚洪, 于敦喜, 吕当振, 张会兴. 煤中钠元素赋存形态对亚微米颗粒物形成的影响研究[J]. 工程热物理学报, 2009, 30(9): 1589-1592.(LIU Xiao-Wei, XU Ming-Hou, YAO Hong, YU Dun-Xi, LU Dang-Zhen, ZHANG Hui-Xing. Study of occurrence mode of sodium effect on the submicron ash particle formation during coal combustion[J]. J Eng Thermophys, 2009, 30(9): 1589-1592.)

    18. [18]

      [18] ZHOU H, ZHOU B, LI L T, ZHANG H L. Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhundong coal) in a 300 KW test furnace[J]. Energy Fuels, 2013, 27(11): 7008-7022.

    19. [19]

      [19] ZHANG Dong-ke. 低阶煤程序升温热解过程中钠、硅和硫间的相互作用[J]. 燃料化学学报, 2005, 33(5): 513-519.(ZHANG Dong-ke. Interaction between sodium, silica and sulphur in a low-rank coal during temperature-programmed pyrolysis[J]. J Fuel Chem Technol, 2005, 33(5): 513-519.)

    20. [20]

      [20] 陈海峰, 沙兴中, 徐依青, 杭月珍, 高晋生, 尹桂芳, 倪献智, 王泉清, 白浚仁. 催化剂对煤着火特性的影响——I.煤性质及煤中矿物质对煤催化着火的影响[J]. 燃料化学学报, 1993, 21(2): 172-179.(CHEN Hai-feng, SHA Xing-zhong, XU Yi-qing, HANG Yue-zhen, GAO Jin-sheng, YIN Gui-fang, NI Xian-zhi, WANG Quan-qing, BAI Jun-ren. Catalytic ignition property of coal Ⅰ. The influence of coal rank and mineral matter in coals or chars[J]. J Fuel Chem Technol, 1993, 21(2): 172-179.)

    21. [21]

      [21] 孟建强. 准东煤燃烧及结渣特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.(MENG Jian-qiang. Research on combustion and slagging characteristics of Zhundong coal[D]. Harbin: Harbin Institute of Technology, 2013.)

    22. [22]

      [22] 王兴军, 陈凡敏, 刘海峰, 于广锁, 王辅臣. 煤水蒸气气化过程中钾催化剂与矿物质的相互作用[J]. 燃料化学学报, 2013, 41(1): 9-13.(WANG Xing-jun, CHEN Fan-min, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Interaction of potassium with mineral matter in coal during steam gasification[J]. J Fuel Chem Technol, 2013, 41(1): 9-13.)

    23. [23]

      [23] 岑可法, 樊建人, 池作和, 沈珞婵. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防治原理与计算[M].北京: 科学出版社, 1993: 237-265.(CEN Ke-fa, FAN Jian-ren, CHI Zuo-he, SHEN Lu-chan. Prevention theory and calculation of ash accumulation, slagging, erosion and corrosion of boiler and heat exchanger[M]. Beijing: Science Press, 1994: 231-232(in Chinese).)

    24. [24]

      [24] KALMANOVITCH D P, WILLIAMSON J. Crystallization of coal ash melts in mineral matter and ash in coal[M]. S V K(Ed), Washington, DC, USA: American Chemical Society, 1986: 156-169.

  • 加载中
    1. [1]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    4. [4]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    5. [5]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    8. [8]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    11. [11]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    12. [12]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    13. [13]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    17. [17]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    18. [18]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(0)
  • Abstract views(483)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return