Citation: HAN Ke-xin, HUANG Zhen-yu, WANG Zhi-hua, ZHOU Jun-hu. Action mechanism of sodium compounds in Zhundong coal ash on the process of sintering and fusion[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 22-26. shu

Action mechanism of sodium compounds in Zhundong coal ash on the process of sintering and fusion

  • Corresponding author: HUANG Zhen-yu, 
  • Received Date: 25 June 2014
    Available Online: 26 September 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB214906). (973计划, 2012CB214906)

  • Na2CO3 was added into coal ash with the amount of 20% which was converted into the weight of Na2O. Then the mixed coal ash samples were sintered under different temperatures. To explore the transition mechanism of sodium compounds in the sintering process, the EDS elemental analysis method and XRD phase analysis method were used to analyze the sintered ash samples. Then chemical thermodynamic equilibrium calculations were carried out on the basis of EDS analysis results with the Equilib module of the Fact sage 5.2 software. And the results were compared with those of the experiment. Results show that sulfur enrichment will occur as the elevating of temperature. Sodium mainly reacts with sulfur to compose Na2SO4. At the same time NaCl occurs, and it will react with the potassium compounds to generate KCl. NaCl, KCl and Na2SO4 react with other substances to produce low temperature eutectics.
  • 加载中
    1. [1]

      [1] 杨忠灿, 刘家利, 何红光. 新疆准东煤特性研究及其锅炉选型[J]. 热力发电, 2010, 39(8): 38-40.(YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gener, 2010, 39(8): 38-40.)

    2. [2]

      [2] 陈川, 张守玉, 刘大海, 郭熙, 董爱霞, 熊绍武, 施大钟, 吕俊复. 新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J]. 燃料化学学报, 2013, 41(7): 832-838.(CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LV Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013, 41(7): 832-838.)

    3. [3]

      [3] 兰泽全. 煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究[D]. 杭州: 浙江大学, 2004.(LAN Ze-quan. Mechanism & dynamic characteristics of fouling and slagging for coal and black liquor coal-water slurry[D]. Hangzhou: Zhejiang University, 2004.)

    4. [4]

      [4] 俞海淼, 曹欣玉, 周俊虎, 岑可法. 高碱灰渣烧结熔融过程中的物相变化[J]. 煤炭学报, 2007, 32(12): 1316-1319.(YU Hai-miao, CAO Xin-yu, ZHOU Jun-hu, CEN Ke-fa. Phase transformation of high alkaline ash residue on the process of sintering and fusion[J]. J Chin Coal Soc, 2007, 32(12): 1316-1319.)

    5. [5]

      [5] BON A A, HELBLE J J. Transportation of inorganic coal constituents in combustion system[J]. Quart Rep (MIT), 1990, (17): 57-66.

    6. [6]

      [6] 毛军, 徐明厚, 李帆. 碱性矿物质对煤灰熔融特性影响的研究[J]. 华中科技大学学报: 自然科学版, 2003, 31(4): 59-62.(MAO Jun, XU Ming-hou, LI Fan. The effect of alkali mineral matter on the ash melting characteristics[J]. J Huazhong Univ Sci Technol, 2003, 31(4): 59-62.)

    7. [7]

      [7] 高峰, 马永静. Mg2+ 和 Na+ 对高熔点煤灰熔融性的影响[J]. 燃料化学学报, 2012, 40(10): 1161-1166.(GAO Feng, MA Yong-jing. Study on the effect of Mg2+ and Na+ on the fusibility of coal ash with high ash fusion point[J]. J Fuel Chem Technol, 2012, 40(10): 1161-1166.)

    8. [8]

      [8] BRYERS R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Prog Energy Combust Sci, 1996, 22(1): 29-120.

    9. [9]

      [9] 马志斌, 白宗庆, 白进, 李文, 郭振兴. 高温弱还原气氛下高硅铝比煤灰变化行为的研究[J]. 燃料化学学报, 2012, 40(3): 279-285.(MA Zhi-bin, BAI Zong-qing, BAI Jin, LI Wen, GUO Zhen-xing. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2012, 40(3): 279-285.)

    10. [10]

      [10] OLESCHKO H, MULLER M. Influence of coal composition and operating conditions on the release of alkali species during combustion of hard coal[J]. Energy Fuels, 2007, 21(6): 3240-3248.

    11. [11]

      [11] RAASK E. Mineral impurities in coal combustion: behavior, problems, and remedial measures[M]. Taylor & Francis, 1985.

    12. [12]

      [12] 撒应禄. 锅炉受热面外部过程[M]. 北京: 水利电力出版社, 1994.(SA Ying-lu. Boiler heating surface external processes[M]. Beijing: Water Resources and Electric Power Press, 1994.)

    13. [13]

      [13] 何金桥, 陈冬林. 环境气氛作用下煤灰在刚玉质耐火板上的表面结渣行为[J]. 燃料化学学报, 2011, 39(11): 812-816.(HE Jin-qiao, CHEN Dong-lin. Effect of ambient atmosphere on coal ash slagging on the surface of corundum refractory liner[J]. J Fuel Chem Technol, 2011, 39(11): 812-816.)

    14. [14]

      [14] 盛昌栋, 徐益谦. 我国发电用煤的碱性成分在煤灰固硫中的作用[J]. 燃烧科学与技术, 1998, 4(1): 99-103.(SHENG Chang-dong, XU Yi-qian. Roles of alkaline elements in sulphur rerention by ashes from chinese coals used for electric power generation[J]. J Combust Sci Technol, 1998, 4(1): 99-103.)

    15. [15]

      [15] 贾明生, 张乾熙. 影响煤灰熔融性温度的控制因素[J]. 煤化工, 2007, 35(3): 1-5.(JIA Ming-sheng, ZHANG Qian-xi. Key factors affecting fusion temperature of coal ash[J]. Coal Chem Ind, 2007, 35(3): 1-5.)

    16. [16]

      [16] 池作和. 燃用劣质煤电站锅炉低负荷稳燃, 防结渣及减轻烟温偏差研究[M]. 高等教育出版社, 2002.(CHI Zuo-he. The low load flame stability, slagging prevention and flue gas temperature deviation elimination of utility boiler firing low rank pulverized coal[M]. Beijing: Higher Education Press, 2002.)

    17. [17]

      [17] 姚润生, 李小红, 左永飞, 李凡. 钠基助熔剂对灵石煤灰熔融特性温度的影响[J]. 煤炭学报, 2011, 36(6): 1027-1031.(YAO Run-sheng, LI Xiao-hong, ZUO Yong-fei, LI Fan. Effect of sodium based flux on the ash melting characteristics temperature of Lingshi coal[J]. J Chin Coal Soc, 2011, 36(6): 1027-1031.)

    18. [18]

      [18] 戴爱军, 杜彦学, 谢欣馨. 煤灰成分与灰熔融性关系研究进展[J]. 煤化工, 2009, (4): 16-19.(DAI Ai-jun, DU Yan-xue, XIE Xin-xin. Research progress on the relationship between coal ash components and ash fusion character[J]. Coal Chemical Industry, 2009, (4): 16-19.)

    19. [19]

      [19] 陈玉爽, 张忠孝, 乌晓江, 李洁, 管嵘清, 闫博. 配煤对煤灰熔融特性影响的实验与量化研究[J]. 燃料化学学报, 2009, 37(5): 521-526.(CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo, Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009, 37(5): 521-526.)

    20. [20]

      [20] 董一真. 煤灰中成分结渣特性研究[D]. 杭州: 浙江大学, 2006.(DONG Yi-zhen. Study on the slagging characteristics of main components in coal ash[D]. Hangzhou: Zhejiang University, 2006.)

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    3. [3]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    20. [20]

      Xiwen Xing Muyi Guo Zhuoran Hu Shunchun Yao Yao Sun . Context-Driven Teaching with Cue-Guided Reasoning: Taking X-Ray Teaching Practice as an Example. University Chemistry, 2025, 40(7): 141-147. doi: 10.12461/PKU.DXHX202409097

Metrics
  • PDF Downloads(0)
  • Abstract views(461)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return