Citation: YANG Yan-mei, ZHANG Hai, LÜ Jun-fu, YANG Hai-rui. Experimental study on flash pyrolysis of pulverized coals in Py-GC[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 9-15. shu

Experimental study on flash pyrolysis of pulverized coals in Py-GC

  • Corresponding author: ZHANG Hai, 
  • Received Date: 18 July 2014
    Available Online: 29 September 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2013AA051202) (863计划, 2013AA051202) 中国科学院战略性先导科技专项(XDA0402020209). (XDA0402020209)

  • Flash pyrolysis characteristics of four Chinese coals were studied in a Curie-pointed reactor and gas chromatography (Py-GC) combined system. The yield of volatile matter (VM) and evolution of gaseous VM components were measured. It is found that ≥ 50% of VM is released at the early stage (t ≤ 2 s) of flash pyrolysis. It needs ~10 s to totally devolatilize 1 mg coal in the Curie-point reactor with the sample wrapped in a ferromagnetic foil. The yields of gaseous VM component are in the order of H2 > CH4 > CO > CO2 > C2(C2H6, C2H4) > C3 (C3H8, C3H6). The yield of VM increases as the pyrolysis temperature increases. Under the same pyrolysis condition, high VM content coals released more VM than the low VM content ones. Yields of H2 and CH4 increase greatly with the pyrolysis temperature. Yields of CO and CO2 depend on both the content of oxygen in the coal and pyrolysis temperature. Amounts of C2 and C3 gases are relatively much less than the others, accounting for less than 5% in volume in the gaseous VM.
  • 加载中
    1. [1]

      [1] ANTHONY D B, HOWARD J B. Coal devolatilization and hydrogastification[J]. AIChE J, 1976, 22(4): 625-656.

    2. [2]

      [2] SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis: Experiments, kinetic rates and mechanisms[J]. Prog Energy Combust Sci, 1992, 18(2): 133-220.

    3. [3]

      [3] FLETCHER T H, KERSTEIN A R, PUGMIRE R J, GRANT D M. Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields[J]. Energy Fuels, 1990, 4(1): 54-60.

    4. [4]

      [4] KOBAYASHI H, HOWARD J B, SAROFIM A F. Coal devolatilization at high temperatures[J]. Symp Combust, 1977, 16(1): 411-425.

    5. [5]

      [5] 周俊虎, 平传娟, 杨卫娟, 刘建忠, 程军, 岑可法. 用热重红外光谱联用技术研究混煤热解特性[J]. 燃料化学学报, 2004, 32(6): 658-662.(ZHOU Jun-hu, PING Chuan-juan, YANG Wei-juan, LIU Jian-zhong, CHENG Jun, CEN Ke-fa. Experimental study on the pyrolysis characteristic of coal blends using TGA-FTIR[J]. J Fuel Chem Technol, 2004, 32(6): 658-662.)

    6. [6]

      [6] SATHE C, PANG Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a victorian brown coal[J]. Energy Fuels, 1999, 13(3): 748-755.

    7. [7]

      [7] 刘铁峰, 房倚天, 王洋. 煤高温快速热解规律研究[J]. 燃料化学学报, 2009, 37(1): 20-25.(LIU Tie-feng, FANG Yi-tian, WANG Yang. Rapid pyrolysis of coal at high temperature[J]. J Fuel Chem Technol, 2009, 37(1): 20-25.)

    8. [8]

      [8] 温玉鑫. 高升温速率和压力条件下的煤热解和气化特性研究[D]. 北京: 中国科学院工程热物理研究所, 2013.(WEN Xin-yu. Research on the characteistics of coal pyrolysis and gasification at high heating rates and high pressure[D]. Beijing: Institute if Engineering Thermopgysics, Chinese Academy of Sciences, 2013.)

    9. [9]

      [9] 傅维镳. 煤燃烧理论及其宏观通用规律[M]. 北京: 清华大学出版社, 2003.(FU Wei-biao. Coal combustion theory and macroscopic common law[M]. Beijing: Tsinghua University Press, 2003.)

    10. [10]

      [10] 余剑, 朱剑虹, 岳君容, 孙立鑫, 刘新华, 许光文. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报, 2009, 60(10): 2669-2674.(YU Jian, ZHU Jian-hong, YUE Jun-rong, SUN Li-xin, LIU Xin-hua, XU Guang-wen. Development and applicaion of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. J Chem Ind Eng(China), 2009, 60(10): 2669-2674.)

    11. [11]

      [11] 余剑, 朱剑虹, 郭凤, 段正康, 刘韵怡, 许光文. 生物质在微型流化床中热解动力学与机理[J]. 燃料化学学报, 2010, 38(6): 666-672.(YU Jian, ZHU Jian-hong, GUO Feng, DUAN Zheng-kang, LIU Yun-yi, XU Guang-wen. Reaction kinetics and mechanism of biomass pyrolysis in a micro-fluidized bed reactor[J]. J Fuel Chem Technol, 2010, 38(6): 666-672.)

    12. [12]

      [12] 曾玺, 王芳, 韩江则, 张聚伟, 刘云义, 汪印, 余剑, 许光文. 微型流化床反应分析及其对煤焦气化动力学的应用[J]. 化工学报, 2013, 64(1): 289-296.(ZENG Xi, WANG Fang, HAN Jiang-ze, ZHANG Ju-wei, LIU Yun-yi, WANG Yin, YU Jian, XU Guang-wen. Micro fluidized bed reaction analysis and its application to coal char gasification kinetics[J]. J Chem Ind Eng(China), 2013, 64(1): 289-296.)

    13. [13]

      [13] 齐永锋, 章明川, 张健, 田凤国. 超细煤粉快速热解动力学特性实验研究[J]. 化学工程, 2009, 37(3): 62-74.(QI Yong-feng, ZHANG Ming-chuan, ZHANG Jian, TIAN Feng-guo. Experimental investigation on fast pyrolysis kinetic characteristics of micro-pulverized coal [J]. Chem Eng, 2009, 37(3): 62-74.)

    14. [14]

      [14] 王辉, 姜秀民, 刘建国. 水煤浆和原煤粉居里点裂解仪对比实验研究[J]. 化学工程, 2007, 35(3): 19-22.(WANG Hui, JIANG Xiu-min, LIU Jian-guo. Experimental study on comparison of coal water slurry and parent pulverized coal with Curie-point pyrolyser[J]. Chem Eng, 2007, 35(3): 19-22.)

    15. [15]

      [15] 史燚, 黄俐研, 金熹高. 居里点裂解色谱及其应用[J]. 现代仪器使用与维修, 1988,(3): 1-4.(SHI Yi, HUANG Li-yan, JIN Xi-gao. Curie-point pyrolysis gas chromatography and its application[J]. Mod Equip Use Maint, 1988,(3): 1-4.)

    16. [16]

      [16] 李浩春. 分析化学手册(第五分册)气相色谱分析[M]. 2版. 北京: 化学工业出版社, 1999.(LI Hao-chun. Handbook of analytical chemistry - gas chromatogram(Vol. 5) [M]. 2nd ed. Beijing: Chemical Industry Press, 1999.)

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    4. [4]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    5. [5]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    10. [10]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    11. [11]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    12. [12]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    19. [19]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(693)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return