Citation: FAN Li-ping, MIAO Xiao-hui. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1506-1512. shu

Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation

  • Corresponding author: FAN Li-ping, 
  • Received Date: 31 July 2014
    Available Online: 2 October 2014

    Fund Project: 国家自然科学基金(61143007) (61143007) 辽宁省教育厅科技攻关项目(2012140) (2012140) 沈阳市科学技术计划项目(F14-207-6-00)。 (F14-207-6-00)

  • For treatment of restaurant wastewater, an experimental system of microbial fuel cell was set up, and the power generation and wastewater purification performance of microbial fuel cell system were studied. Firstly, Fe(NO3)3 solution was used as the catholyte to prove the feasibility of wastewater biodegradation and simultaneous electricity generation from restaurant wastewater. Then, NaCl solution and K3[FE(CN)6] solution are respectively used as the catholyte to conduct contrastive experiments, for studying the effect of power generation performance and wastewater purification of microbial fuel cell system in different operating environment. The results showed that the COD removal efficiency of NaCl solution and K3[FE(CN)6] solution were 30% and 22% respectively, whose average current density were 5.6 mA/m2 and 5.2 mA/m2. In the case that the wastewater dilution ratio was 2:1 and the concentration of NaCl solution was 0.4 mol/L, the generating ability and the purifying effect of the microbial fuel cell achieved the best state, whose steady current density reached at 8.8 mA/m2 and the COD removal efficiency was 33.3%.
  • 加载中
    1. [1]

      [1] KISKU G C, YADAV S, SHARMA R K, NEGI M. Potential environmental pollution hazards by coal based power plant at Jhansi(UP) India[J]. Environ Earth Sci, 2012, 67(7): 2109-2120.

    2. [2]

      [2] SHAH C K, YAGNIK B N. Bioelectricity production using microbial fuel cell[J]. Res J Biotechnol, 2013, 8(3): 84-90.

    3. [3]

      [3] MOHAN S, MOHANAKRISHNA G, PURUSHOTHAM REDDY B, SARAVANAN R, SARMA P N. Bioelectricity generation from chemical wastewater treatment in mediatorless(anode) microbial fuel cell(MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment[J]. Biochem Eng J, 2008, 39(1): 121-130.

    4. [4]

      [4] DU Z, LI H, GU T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy[J]. Biotechnol Adv, 2007, 25(5): 464-482.

    5. [5]

      [5] DURRUTY I, BONANNI P S, GONZÁLEZ J F, BUSALMEN J P. Evaluation of potato-processing wastewater treatment in a microbial fuel cell[J]. Bioresource Technol, 2012, 105(1): 81-87.

    6. [6]

      [6] HUGGINS T, FALLGREN P H, JIN S, REN Z J. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater[J]. J Microbial Biochem Technol, 2013, S6: 1-5.

    7. [7]

      [7] RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, 23(6): 956-964.

    8. [8]

      [8] SINGH D, PRATAP D, BARANWAL Y, KUMAR B, CHAUDHARY R K. Microbial fuel cells: A green technology for power generation[J]. Ann Biol Res, 2010, 1(3): 128-138.

    9. [9]

      [9] 徐金球, 雷晓晓, 王景伟, 白建峰, 方佳丽. 微生物燃料电池处理有机废水研究进展[J]. 上海第二工业大学学报, 2013, 30(3): 173-179. (XU Jin-qiu, LEI Xiao-xiao, WANG Jing-wei, BAI Jian-feng, FANG Jia-li. Research progress of microbial fuel cell for treating actual organic wastewater[J]. Journal of Shanghai Second Polytechnic University, 2013, 30(3): 173-179.)

    10. [10]

      [10] LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREGUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells: Methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.

    11. [11]

      [11] 赵煜, 马彦, 李婷, 薄晓, 王俊文, 李鹏, 钟丽萍, 孙彦平. 生物燃料电池处理生活污水同步产电特性研究[J]. 燃料化学学报, 2014, 42(4): 481-486. (ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. 2014, 42(4): 481-486.)

    12. [12]

      [12] 翁建兵, 张凤娥, 董良飞, 雷春生, 付东庆. 生物质材料预处理餐饮废水[J]. 环境工程学报, 2013, 7(10): 3908-3912. (WENG Jian-bing, ZHANG Feng-e, DONG Liang-fei, LEI Chun-sheng, FU Dong-qing. Pretreatment of restaurant wastewater by biomass materials[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3908-3912.)

    13. [13]

      [13] OTHUMAN M A, NIK A N F, GHAZALI N. Development of environmental friendly mini biogas to generate electricity by means of food waste[J]. J Mater Environ Sci, 2014, 5(4): 1218-1223.

    14. [14]

      [14] WONGTHANATE J, CHINNACOTPONG K, KHUMPONG M. Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora[J]. Int J Energy Environ Eng, 2014, 5(1): 1-6.

    15. [15]

      [15] 丁梅梅, 朱霞. 无汞压力法测定BOD5的应用与讨论[J]. 青海环境, 2008, 18(1): 42-44. (DING Mei-mei, ZHU Xia. Application and discussion of determination method for BOD5 based on non- mercury piezometry[J]. Journal of Qinghai Environment, 2008, 18(1): 42-44.)

  • 加载中
    1. [1]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    2. [2]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    7. [7]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    8. [8]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    9. [9]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(363)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return