Citation: WEI Xiao-ming, LIU Yun-qi, ZHAO Liang, LIU Chen-guang. Effect of preparation on hydroisodewaxing performance for diesel fuel of NiW/SAPO-11 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1500-1505. shu

Effect of preparation on hydroisodewaxing performance for diesel fuel of NiW/SAPO-11 catalysts

  • Corresponding author: LIU Yun-qi, 
  • Received Date: 7 August 2014
    Available Online: 17 September 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB226905) (973计划, 2010CB226905) 国家自然科学基金(21006128, U1162203)。 (21006128, U1162203)

  • Catalysts for hydroisodewaxing were prepared by SAPO-11 zeolite instead of ZSM-5 zeolite with nickel and tungsten as metal components. The catalysts were characterized by using XRD, BET and Py-IR. Using Changqing straight-run diesel oil as raw material, we evaluated the hydroisoderwaxing performance of the NiW/SAPO-11 catalysts prepared by different methods. The catalytic performance evaluation was performed on a pressurized fixed-bed microreactor. The result shows that the NiW/SAPO-11 catalyst prepared by mixing-kneading Ni first and then impregnating W active component has better hydroisodewaxing performance. At the reaction conditions of 340 ℃, 4.0 MPa, LHSV 1.0 h-1 and hydrogen to oil volume ratio of 500:1, the freezing point of the diesel oil was decreased from 0 ℃ to -28 ℃, and the diesel yield was as high as 96.0%.
  • 加载中
    1. [1]

      [1] 杨仕铭, 曲良龙. 临氢降凝工艺在低凝柴油生产中的作用[J]. 当代石油石化, 2008, 16(3): 23-26. (YANG Shi-ming, QU Liang-long, The function of hydrodefreezing technology in low-freezing diesel oil production[J]. Petroleum & Petrochemical Toda, 2008, 16(3): 23-26.)

    2. [2]

      [2] 胡志海, 蒋东红, 赵新强. RICH-临氢降凝组合工艺的研究与开发[J]. 石油炼制与化工, 2004, 35(1): 1-4. (HU Zhi-hai, JIANG Dong-hong, ZHAO Xinq-qiang. R&D for RICH-hydrodewaxing combined process[J]. Petroleum Processing and Petrochemicals, 2004, 35(1): 1-4.)

    3. [3]

      [3] ZhANG X J, GUO A J, WANG F C, DUAN X. Directly producing clean and low softening point diesel using integrated hydrotreating and hydroisomerizing catalysts[J]. Energy Fuels, 2010, 24(7): 3772-3777.

    4. [4]

      [4] 庞显峰. 催化柴油加氢精制-改质-异构降凝组合工艺[J]. 炼油与化工, 2012, 23(2): 19-20. (PANG Xian-feng. Combined process for hydrorefining-quality improvement-isomerization pour point depression of catalytic diesel oil[J]. Refining and Chemical Industry, 2012, 23(2): 19-20.)

    5. [5]

      [5] 张飞, 耿承辉, 高志贤, 周敬来. Pt/SAPO-11临氢异构化催化剂反应特性的研究[J].燃料化学学报, 2005, 33(3): 309-313. (ZHANG Fei, GENG Cheng-hui, GAO Zhi-xian, ZHOU Jing-lai. Characteristics and process parameters for hydroisomerization over Pt/SAPO-11 catalyst[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 309-313.)

    6. [6]

      [6] 李小辉. SAPO-11分子筛催化剂上正庚烷异构化性能的研究[D]. 大庆石油学院, 2010. (LI Xiao-hui. Preparation and isomerization performance of SAPO-11 molecular sieves[D]. Daqing Petroleum Institute, 2010.)

    7. [7]

      [7] SINHA A K, SEELAN S. Characterization of SAPO-11 and SAPO-31 synthesized from aqueous and non-aqueous media[J]. Appl Catal B: Environ, 2004, 270(1/2): 245-252.

    8. [8]

      [8] 张继光. 催化剂制备过程技术[M]. 北京: 中国石化出版社, 2006. (ZHANG Ji-guang. Catalyst preparation process technology[M]. Beijing: China Petrochemical Press, 2006.)

    9. [9]

      [9] 王尚弟, 孙俊全. 催化剂工程导论[M]. 北京: 化学工业出版社, 2007. (WANG Shang-di, SUN Jun-quan. Introduction catalyst engineering[M]. Beijing: Chemical Industry Press, 2007.)

  • 加载中
    1. [1]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    2. [2]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    3. [3]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    4. [4]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    7. [7]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    8. [8]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    9. [9]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      . . University Chemistry, 2024, 39(11): 0-0.

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(531)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return