Citation: ZHANG Juan, HU Yan-hui, CHENG Lin-yan, REN Teng-jie, LI Jun-pan, ZHAO Di-shun. Synthesis of binuclear metal phthalocyanine and its catalytic performance in the oxidative desulfurization of dibenzothiophene[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1493-1499. shu

Synthesis of binuclear metal phthalocyanine and its catalytic performance in the oxidative desulfurization of dibenzothiophene

  • Corresponding author: ZHANG Juan, 
  • Received Date: 29 May 2014
    Available Online: 4 September 2014

    Fund Project: 国家自然科学基金(21106032) (21106032) 国家级大学生创新创业计划项目(201310082019) (201310082019) 河北科技大学博士科研启动基金(000172)。 (000172)

  • Binuclear cobalt phthalocyanine was synthesized by microwave method and characterized by infrared spectroscopy, UV-visible spectroscopy and thermogravimetry; its catalytic performance in the oxidative desulfurization of dibenzothiophene (DBT) was investigated. The results showed that the binuclear cobalt phthalocyanine exhibits the highest activity among five catalysts; over it, with the catalyst amount of 0.01 g(cat)/5 mL and air flow rate of 80 mL/min, the sulfur removal rate reaches 97.17% after reaction at 40 ℃ for 1 h. The product of DBT oxidation is DBTO2, as verified by the FT-IR and mass spectrometry. The catalytic performance in the oxidation of aromatics and olefins was also investigated, which illustrates that current process using binuclear cobalt phthalocyanine as the catalyst has little influence on the quality of the oil product. Moreover, the catalyst can be reused for 5 times without significant decrease of its oxidation activity.
  • 加载中
    1. [1]

      [1] 高庆毓, 高跃. 浅谈汽车尾气污染与治理[J]. 中国产经, 2013, 5: 42-43. (GAO Qing-yu, GAO Yue. The automobile exhaust pollution and control[J]. Industry of China, 2013, 5: 42-43.)

    2. [2]

      [2] 赵地顺, 张娟, 孙增涛, 王佳蕾. 活性炭负载TiO2光催化氧化二苯并噻吩的研究[J]. 燃料化学学报, 2008, 36(3): 322-325. (ZHAO Di-shun, ZHANG Juan, SUN Zeng-tao, WANG Jia-lei Study on photocatalytic oxidation of dibenzothiophene by activated carbon supported TiO2[J]. Journal of FuelChemistry and Technology, 2008, 36(3): 322-325.)

    3. [3]

      [3] JABBARNEZHAD P, HAGHIGHI M, TAGHAVINEZHAD P. Sonochemical synthesis of NiMo/Al2O3-ZrO2 nanocatalyst: Effect of sonication and zirconia loading on catalytic properties and performance in hydrodesulfurization reaction[J]. Fuel Process Technol, 2014, 126: 392-401.

    4. [4]

      [4] WANG H, WU Y, LIU Z W, HE L, YAO Z Y, ZHAO W Y. Deposition of WO3 on Al2O3 via a microwave hydrothermal method to prepare highly dispersed W/Al2O3 hydrodesulfurization catalyst[J]. Fuel, 2014, 136: 185-193.

    5. [5]

      [5] 裴玉同, 罗勇, 吴向阳, 李建龙, 宋家龙. 改性NaY分子筛吸附脱硫性能的研究[J]. 高校化学工程学报, 2012, 25(6): 1078-1083. (PEI Yu-tong, LUO Yong, WU Xiang-yang, LI Jian-long, SONG Jia-long. Performance of Adsorptive Desulfurization over Modified NaY Zeolite[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 25(6): 1078-1083.)

    6. [6]

      [6] 张傑, 黄崇品, 陈标华, 李英霞, 乔聪震. 用离子液体萃取脱除汽油中的硫化物[J]. 燃料化学学报, 2005, 33(4): 431-434. (ZHANG Jie, HUANG Chong-pin, CHEN Biao-hua, LI Ying-xia, QIAO Cong-zhen. Extractive desulfurization from gasoline by [Cu2Cl3\[J]. Journal of Fuel Chemistry and Technology, 2005, 33(4): 431-434.)

    7. [7]

      [7] 戴咏川, 亓玉台, 赵德智, 张会成. 柴油在超声波/Cu2+/H2O2中的氧化脱硫[J]. 燃料化学学报, 2007, 35(2): 188-191. (DAI Yong-chuan, QI Yu-tai ZHAO De-zhi, ZHANG Hui-cheng. Ultrasound oxidative desulfurization of diesel oil with copper ion and hydrogen peroxide[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 188-191.)

    8. [8]

      [8] CHAMACK M, MAHJOUB A R, AGHAYAN H. Cesium salts of tungsten-substituted molybdophosphoric acid immobilized onto platelet mesoporous silica: Efficient catalysts for oxidative desulfurization of dibenzothiophene[J]. Chem Eng J, 2014, 255: 686-694.

    9. [9]

      [9] GARCÍA-GUTIÉRREZ J L, LAREDO G C, GARCÍA-GUTIÉRREZ P, JIMNEZ-CRUZ F. Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide[J]. Fuel, 2014, 138: 118-125.

    10. [10]

      [10] MURATA S, MURATA K, KIDENA K, NOMURA M. A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes[J]. Energy Fuel, 2004, 18(l): 116-121.

    11. [11]

      [11] HUANG Z, BAO H, YAO Y, LU W, CHEN W. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Appl Catal B: Environ, 2014, 154: 36-43.

    12. [12]

      [12] GHASEMI M, DAUD W R W, RAHIMNEJAD M, REZAYI M, FATEMI A, JAFARI Y, SOMALU M R, MANZOUR A. Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells[J]. Int J Hydrogen Energy, 2013, 38(22): 9533-9540.

    13. [13]

      [13] 许恒哲, 乐园, 陈建峰. 超细酞菁蓝微粒的制备及其电泳性能的研究[J]. 高校化学工程学报, 2009, 23(4): 639-643. (XU Heng-zhe, LE Yuan, CHEN Jian-feng. Preparation of phthalocyanine blue nanocrystals and their electrophoretic Properties[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(4): 639-643.)

    14. [14]

      [14] 冯海霞, 张智慧, 朱志昂, 严诗楷, 王传忠. 金属酞菁催化巯基乙醇氧化的研究[J]. 燃料化学学报, 1998, 26(6): 516-520. (FENG Hai-xia, ZHANG Zhi-hui, ZHU Zhi-ang, YAN Shi-kai, WANG Chuan-zhong. Study on catalyzed oxidation of 2-mercaptoehanol by metallophthalocyanine[J]. Journal of Fuel Chemistry and Technology, 1998, 26(6): 516-520.)

    15. [15]

      [15] ZHOU X R, LI J, WANG X N, JIN K, MA W. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine[J]. Fuel Process Technol, 2009, 90(2): 317-323.

    16. [16]

      [16] 赵地顺, 任红威, 马四国, 刘翠微. 催化裂化汽油的相转移催化氧化脱硫反应研究[J]. 化学学报, 2006, 64(20): 2086-2090. (ZHAO Di-shun, REN Hong-wei, MA Si-guo, LIU Cui-wei. Study of oxidative desulfurization of fluid catalytic cracking gasoline by phase transfer catalysis [J]. Acta Chimi Sinica, 2006, 64(20): 2086-2090.)

    17. [17]

      [17] ZHANG J, LI J, REN T, HU Y, GE J, ZHAO D. Oxidative desulfurization of dibenzothiophene based on air and cobalt phthalocyanine in ionic liquid[J]. RSC Adv, 2014, 4(7): 3206-3210.

    18. [18]

      [18] ILIEV V, MIHAYLOVA A, BILYARSKA L P. Oxidationof phenols in aqueous solution, catalyzed by mononuclear and polynuclear metal phthalocya, nine complexes[J]. J Mol Catal A: Chem, 2002, 184(1/2): 121-130.

    19. [19]

      [19] YANG J, VAN D, MARK M R. Synthesis of binuclear phthalocyanines sharing a benzene or naphthalene ring[J]. Tetrahedron lett, 1993, 34(33): 5223-5226.

    20. [20]

      [20] 杨欣雨. 溴代酞菁配合物的合成及其对锂/亚硫酰氯电池催化性能的研究[D]. 西安: 西北大学, 2009. (YANG Xin-yu. Synthesis of brominated phthalocyanine complexes and their study of lithium / thionyl chloride batteries catalytic properties[D]. Xi-An: Northwest University, 2009.)

    21. [21]

      [21] SHIRAI H, HANABUSA K, KITAMURA M, MASUDA E, HIRABARU O, HOJO N. Synthesis and properties of metal complexes[J]. Makromol Chem, 1984, 185: 2537-2542.

    22. [22]

      [22] 胡晓明. 双核酞菁铁电催化性能研究[D]. 北京: 北京工业大学, 2012. (HU Xiao-ming. Study of electric catalytic properties of biunclear iron pthalocyanine[D]. Beijing: Beijing University of Technology, 2012.)

    23. [23]

      [23] 陈文兴, 姚玉元, 吕素芳, 陈海相, 胡智文, 余志成. 平面双核金属酞菁衍生物的催化氧化性能[J]. 化工学报, 2004, 55(6): 924-928. (CHEN Wen-xing, YAO Yu-yuan, LV Su-fang, CHEN Xiang-hai, HU Zhi-wen, YU Zhi-cheng. Catalytic oxidation activity of planar binuclear metal-phthalocyanine derivatives[J]. Journal of Chemical Industry and Engineering, 2004, 55(6): 924-928.)

    24. [24]

      [24] LI B T, ZHOU X X, WANG X J. Hybrid binuclear-cobalt-phthalocyanine as oxygen reduction reaction catalyst in single chamber microbial fuel cells[J]. J Power sources, 2014, 272: 320-327.

    25. [25]

      [25] 陈文兴, 魏莉莉, 汪进前, 姚玉元, 吕慎水, 陈世良. 平面双核铜酞菁催化氧化硫醇[J]. 中国科学: B辑, 2006, 36(4): 299-303. (CHEN Wen-xing, WEI Li-li, WANG Qian-jin, YAO Yu-yuan, LV Shen-shui, CHEN Shi-liang. Planar binuclear copper phthalocyanine catalyzed oxidation of thiols[J]. Science in China: Series B, 2006, 36(4): 299-303.)

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    6. [6]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(408)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return