Citation: SU Ya-xin, LU Zhe-xing, ZHOU Hao, DOU Yi-feng, DENG Wen-yi. Experimental study on NO reduction by propane over iron[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1470-1477. shu

Experimental study on NO reduction by propane over iron

  • Corresponding author: SU Ya-xin, 
  • Received Date: 31 July 2014
    Available Online: 15 September 2014

    Fund Project: 国家自然科学基金(51278095)。 (51278095)

  • NO reduction by propane over iron was experimentally investigated in a one-dimensional temperature-programmed ceramic tubular reactor at 300~1 100 ℃ in N2 and simulated flue gas atmospheres. The NO reduction efficiencies by C3H8 over iron were compared to that by methane. The results show that propane can effectively reduce NO to N2 over metallic iron. In N2 atmosphere, the NO reduction efficiency by propane over metallic iron is higher than that by methane at 500~900 ℃. More than 95% of NO is reduced by propane over metallic iron when the temperature is above 900 ℃, which is very close to that by methane. In simulated flue gas atmosphere, when the excessive air ratio is lower than 1.0, NO reduction by propane over iron exceeds 90% when the temperature is above 900 ℃. There is little difference in NO reduction whether there is a burnout for propane. At same conditions, NO reduction by propane over iron is higher than that by methane. The effect of SO2 on NO reduction by propane over iron is rather small and can be ignored.
  • 加载中
    1. [1]

      [1] 国家环境保护总局. 火电厂大气污染物排放标准(GB13223—2011)[S]. 2011. (Ministry of Environment Protection of China. Emission standard of air pollutants for thermal power plants(GB13223—2011)[S]. 2011.)

    2. [2]

      [2] FORZATTI P, NOVA I, TRONCONI E, KUSTOV A, THOGERSEN J R. Effect of operating variables on the enhanced SCR reaction over a commercial V2O5-WO3/TiO2 catalyst for stationary applications[J]. Catal Today, 2012, 184(1): 153-159.

    3. [3]

      [3] HELD W, KOING A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990, 99(4): 209-216.

    4. [4]

      [4] IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Shokubai, 1990, 32(6): 430-433.

    5. [5]

      [5] ERKFELDT S, PALMQVIST A, PETERSSON M. Influence of the reducing agent for lean NOx reduction over Cu-ZSM-5[J]. Appl Catal B: Environ , 2011, 102(3/4): 547-554.

    6. [6]

      [6] LI J H, ZHU R H, CHENG Y S, LAMBERT C K, YANG R T. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOx with ammonia[J]. Environ Sci Technol, 2010, 44(5): 1799-1805.

    7. [7]

      [7] YANG T T, BI H T, CHENG X X. Novel fluidized bed reactor for integrated nox adsorption-reduction with hydrocarbons[J]. Environ Sci Technol, 2009, 43(13): 5049-5053.

    8. [8]

      [8] YANG T T, BI H T, CHENG X X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5[J]. Appl Catal B: Environ, 2011, 102(1/2): 163-171.

    9. [9]

      [9] CAPEK L, DEDECEK J, WICHTERLOVA B. Co-beta zeolite highly active in propane-SCR-NOx in the presence of water vapor: Effect of zeolite preparation and Al distribution in the framework[J]. J Catal, 2004, 227: 352-366.

    10. [10]

      [10] FERREIRA A P, HENRIQUES C, RIBEIRO M F, RIBEIRO F R. SCR of NO with methane over Co-HBEA and PdCo-HBEA catalysts: The promoting effect of steaming over bimetallic catalyst[J]. Catal Today, 2005, 107-108: 181-191.

    11. [11]

      [11] CHEN X M, ZHU A, AU C T, SHI C. Enhanced low-temperature activity of Ag-promoted Co-ZSM-5 for the CH4-SCR of NO[J]. Catal Lett, 2011, 141(1): 207-212.

    12. [12]

      [12] CHEN S, YAN X, WANG Y, CHEN J, PAN D ,MA J, LI R. Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta[J]. Catal Today, 2011, 175(1): 12-17.

    13. [13]

      [13] LÓNYI F, SOLT H E, VALYON J, BOIX A, GUTIERREZ L B. The SCR of NO with methane over In, H- and Co, In, H-ZSM-5 catalysts: The promotional effect of cobalt[J]. Appl Catal B: Environ, 2012, 117-118: 212-223.

    14. [14]

      [14] LÓNYI F, SOLT H E, PÁSZTI Z, VALYON J. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co, H-mordenite catalysts[J]. Appl Catal B: Environ, 2014, 150-151: 218-229.

    15. [15]

      [15] 荆国华, 李俊华, 杨栋, 郝吉明. 分子筛类催化剂上甲烷选择性催化还原NOx研究进展[J]. 化工进展, 2009, 28(3): 504-510. (JING Guo-hua, LI Jun-hua, YANG Dong, HAO Ji-ming. Progress of selective catalytic reduction of NOx with methane over zeolite-based catalysts[J]. Chemical Industry and Engineering Progress, 2009, 28(3): 504-510.)

    16. [16]

      [16] KIM P S, KIM M K, CHO B K, NAM I-S, OH S H. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3: Morphological, chemical, and kinetic changes[J]. J Catal, 2013, 301: 65-76.

    17. [17]

      [17] CHANG F Y, WEY M Y, CHEN J C. Effects of sodium modification, different reductants and SO2 on NO reduction by Rh/Al2O3 catalysts at excess O2 conditions[J]. J Hazard Mater, 2008, 156(1/3): 348-355.

    18. [18]

      [18] NGUYEN L Q, SALIM C, HINODE H. Performance of nano-sized Au/TiO2 for selective catalytic reduction of NOx by propene[J]. Appl Catal A: Gen, 2008, 347(1): 94-99.

    19. [19]

      [19] PÉREZ-RAMÍREZ J, KAPTEIJN F. Effect of NO on the SCR of N2O with propane over Fe-zeolites[J]. Appl Catal B: Environ, 2004, 47: 177-187.

    20. [20]

      [20] JIANG J, PAN H, SUN G, YE Q, SHAO Z, SHI Y. Promotion of Ni/H-BEA by Fe for NOx reduction with propane in a lean-burn condition[J]. Energy Fuels, 2011, 25(10): 4377-4383.

    21. [21]

      [21] 苏亚欣, 苏阿龙, 成豪. 金属铁直接催化还原NO的实验研究[J]. 煤炭学报, 2013, 38(S1): 206-210. (SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013, 38(s1): 206-210.)

    22. [22]

      [22] GRADON B, LASEK J. Investigation of reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010, 89(11): 3505-3509.

    23. [23]

      [23] 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报, 2013, 41(9): 1129-1135. (SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1129-1135.)

    24. [24]

      [24] 苏亚欣, 任立铭, 苏阿龙, 邓文义. 甲烷在金属铁及氧化铁表面还原NO的实验研究[J]. 燃料化学学报, 2013, 41(11): 1393-1400. (SU Ya-xin, REN Li-ming, SU A-long, DENG Wen-yi. Experimental study on NO reduction by methane over iron and its oxides[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1393-1400.)

    25. [25]

      [25] 苏亚欣, 苏阿龙, 任立铭, 邓文义. SO2对甲烷在金属铁表面还原NO的影响[J]. 燃料化学学报, 2014, 42(3): 377-384. (SU Ya-xin, SU A-long, REN Li-ming, DENG Wen-yi. Effect of SO2 on NO reduction by methane over iron[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 377-384.)

    26. [26]

      [26] MUHLER M, SCHÜTZEA J, WESEMANNA M, RAYMENT T, DENT A, SCHLÖGL R, ERTL G.. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization[J]. J Catal, 1990, 126: 339-360.

    27. [27]

      [27] SHIMADA H, AKAZAWA T, IKENAGA N, SUZUKI T. Dehydrogenation of isobutane to isobutene with iron-loaded activated carbon catalyst[J]. Appl Catal A: Gen, 1998, 168(2): 243-250.

    28. [28]

      [28] MICHORCZYK P, KUSTROWSKI P, CHMIELARZ L, OGONOWSKI J. Influence of redox properties on the activity of iron oxide catalysts in dehydrogenation of propane with CO2[J]. React Kinet Catal Lett, 2004, 82(1): 121-130.

    29. [29]

      [29] 董文生, 王心葵, 彭少逸. 丙烷脱氢制丙烯研究进展[J]. 合成化学, 1997, 5(3): 246-250. (DONG Wen-sheng, WANG Xin-kui, PENG Shao-yi. New progress in propane dehydrogenation to propene[J]. Chinese Journal of Synthetic Chemistry, 1997, 5(3): 246-250.)

    30. [30]

      [30] BALDI M, ESCRIBANO V S, AMORES J M G, MILELLA F, BUSCA G. Characterization of manganese and iron oxides as combustion catalysts for propane and propene[J]. Appl Catal B: Environ, 1998, 17(3): 175-182.

    31. [31]

      [31] KRYLOV O V, MAMEDOV A K, MIRZABEKOVA S R. The regularities in the interaction of alkanes with CO2 on oxide catalysts[J]. Catal Today, 1995, 24(3): 371-375.

    32. [32]

      [32] JANG H Y, LOBO R F. Catalytic dehydrogenation of propane over iron-silicate zeolites[J]. J Catal, 2014, 312: 263-270.

    33. [33]

      [33] 陈庚. 气基还原氧化铁动力学机理研究[D]. 大连: 大连理工大学, 2011. (CHENG Geng. The kinetics of the gas-based reduction of iron oxide[D]. Dalian: Dalian University of Technology, 2011.)

    34. [34]

      [34] JANAS J, ROJEK W, SHISHIDO T, DZWIGAJ S. Selective catalytic reduction of NO on single site FeSiBEA zeolite catalyst: Influence of the C1 and C2 reducing agents on the catalytic properties[J]. Appl Catal B: Environ, 2012, 123/124: 134-140.

    35. [35]

      [35] DAGAUT P, LUCHE J, CATHONNET M. Reduction of NO by propane in a JSR at 1 atm: Experimental and kinetic modeling[J]. Fuel, 2001, 80(7): 979-986.

    36. [36]

      [36] 苏亚欣, GATHITU B B, CHEN W Y. Fe2O3 控制再燃脱硝中间产物HCN的实验研究[J]. 环境科学学报, 2011, 31(6): 1181-1186. (SU Ya-xin, GATHITU B B, CHEN Wei-yin. Experimental examination of HCN compound control by Fe2O3 during reburning processes[J]. Acta Scientiae Circumstantiae, 2011, 31(6): 1181-1186.)

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(417)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return