Citation: DONG Guo-jun, ZHANG Yu-feng, ZHAO Yuan, BAI Yang. Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1455-1463. shu

Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx

  • Corresponding author: DONG Guo-jun, 
  • Received Date: 26 August 2014
    Available Online: 18 October 2014

    Fund Project: Supported by Fundamental Research Funds for Central Universities (HEUCF201403002) (HEUCF201403002)

  • V2O5-WO3/TiO2 catalyst for the selective catalytic reduction of NOx with NH3 (NH3-SCR) was prepared through wet impregnation and characterized by XPS, Raman spectra, H2-TPR, NH3-TPD, NH3-DRIFT, XRD and physical adsorption. The effect of the pH value of vanadium precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx was investigated to optimize the preparation conditions. The results indicated that with the enhancement of precursor solution acidity, more polymeric vanadium species are formed on the catalyst surface; meanwhile, the ratio of V4+(3+)/V5+, surface acidity, and quantity of active sites are increased, whereas the de-NOx performance of the V2O5-WO3/TiO2 catalyst is largely improved. As a result, a V2O5-WO3/TiO2 catalyst with high performance in de-NOx through NH3-SCR can be obtained by enhancing the precursor solution acidity in the preparation process.
  • 加载中
    1. [1]

      [1] MAGNUSSON M, FRIDELL E, INGELSTEN H H. The influence of sulfur dioxide and water on the performance of a marine SCR catalyst[J]. Appl Catal B: Environ, 2012, 111-112: 20-26.

    2. [2]

      [2] BUSCA G, LARRUBIA M A, ARRIGHI L, RAMIS G. Catalytic abatement of NOx: Chemical and mechanistic aspects[J]. Catal Today, 2005, 107-108: 139-148.

    3. [3]

      [3] FORZATTI P. Present status and perspectives in de-NOx SCR catalysis[J]. Appl Catal A: Gen, 2001, 222(1/2): 221-236.

    4. [4]

      [4] FORZATTI P, NOVA I, TRONCONI E, KUATOVB A, THØGERSEN J. Effect of operating variables on the enhanced SCR reaction over a commercial V2O5-WO3/TiO2 catalyst for stationary applications[J]. Catal Today, 2012, 184(1): 153-159.

    5. [5]

      [5] CHIKER F, NOGIER J P, BONARDET J L. Sub-monolayer V2O5-anatase TiO2 and Eurocat catalysts: IR, Raman and XPS characterisation of VOx dispersion[J]. Catal Today, 2003, 78(1/4): 139-147.

    6. [6]

      [6] 黄妍, 童志权, 伍斌, 张俊丰. V2O5-CeO2/TiO2催化剂上低温氨选择性催化还原NO的性能[J]. 燃料化学学报, 2008, 36(5): 616-620. (HUANG Yan, TONG Zhi-quan, WU Bin, ZHANG Jun-feng. Low temperature selective catalytic reduction of NO by ammonia over V2O5-CeO2/TiO2[J]. Journal of Fuel Chemistry and Technology, 2008, 36(5): 616-620.)

    7. [7]

      [7] ZHU Z, LIU Z, LIU S, NIU H, HU T, LIU T, XIE Y. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J]. Appl Catal B: Environ, 2000, 26(1): 25-35.

    8. [8]

      [8] SINGOREDJO L, SLAGT M, WEES J V, KAPTEIJN F, MOULIJN J A. Selective catalytic reduction of NO with NH3 over carbon supported copper catalysts[J]. Catal Today, 1990, 7(2): 157-165.

    9. [9]

      [9] SCHNEIDER H, MACIEJEWSKI M, KOHLER K, WOKAUN A, BAIKER A. Chromia supported on titania VI. Properties of different chromium oxide phases in the catalytic reduction of NO by NH3 studide by in situ diffuse reflectance FTIR spectroscopy[J]. J Catal, 1995, 157(2): 312-320.

    10. [10]

      [10] DJERAD S, TIFOUTI L, CROCOLL M, WEISWEILER W. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts[J]. J Mol Catal A, 2004, 208(1/2): 257-265.

    11. [11]

      [11] LZARO M J, BOYANO A, HERRERA C, LARRUBIA M A, ALEMANY L J, MOLINER R. Vanadium loaded carbon-based monoliths for the on-board No reduction: Influence of vanadia and tungsten loadings[J]. Chem Eng J, 2009, 155(1/2): 68-75.

    12. [12]

      [12] KWON D W, PARK K H, HONG S C. The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method[J]. Appl Catal A: Gen, 2013, 451: 227- 235.

    13. [13]

      [13] BONINGARI T, KOIRALA R, SMIRNIOTIS R G. low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports[J]. Appl Catal B: Environ, 2013, 140-141: 289-298.

    14. [14]

      [14] CHA W, CHIN S, PARK E, YUN S T, JURNG J. Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal[J]. Appl Catal B: Environ, 2013, 140-141: 708-715.

    15. [15]

      [15] HU S, APPLE T M. 15N NMR study of the adsorption of NO and NH3 on titania-supported vanadia catalysts[J]. J Catal, 1996, 158(1): 199-204.

    16. [16]

      [16] WECKHUYSEN B M, KELLER D E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous Catalysis[J]. Catal Today, 2003, 78(1/4): 25-46.

    17. [17]

      [17] LIVAGE J. Hydrothermal synthesis of nanostructured vanadium oxides[J]. Mater, 2010, 3(8): 4175-4195.

    18. [18]

      [18] YOUN S H, JEONG S, HEUI KIM D H. Effect of oxidation states of vanadium precursor solution in V2O5/TiO2 catalysts for low temperature NH3 selective catalytic reduction[J]. Catal Today, 2014, 232: 185-191.

    19. [19]

      [19] WACHS I E, ROBERTS C A. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy[J]. Chem Soc Rev, 2010, 39(12): 5002-5017.

    20. [20]

      [20] CHOO S T, LEE Y G, NAM I S, HAM S W, LEE J B. Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3[J]. Appl Catal A: Gen, 2000, 200(1/2): 177-188.

    21. [21]

      [21] GIAKOUMELOU I, FOUNTZOULA C, KORDULIS C, BOGHOSIAN S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2[J]. J Catal, 2006, 239(1): 1-12.

    22. [22]

      [22] WENT G T, LEU L J, BELL A T. Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5[J]. J Catal, 1992, 134(2): 479-491.

    23. [23]

      [23] YU W C, WUA X D, SI Z C, WENG D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Appl Surf Sci, 2013, 283: 209-214.

    24. [24]

      [24] ALEMANY L J, LIETTI L, FERLAZZO N, FORZATTI P, BUSSA G, GIAMELLO E, BREGANI F. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts[J]. J Catal, 1995, 155(1): 117-130.

    25. [25]

      [25] KOMPIO P G W, BRÜCKNER A, HIPLER F, AUER G, LÖFFLER E, GRÜNERT W. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3[J]. J Catal, 2012, 286: 237-247.

    26. [26]

      [26] VUURMAN M A, WACHS I E, HIRT A M. Structural determination of supported V2O5-WO3/TiO2 catalysts by in situ Raman-spectroscopy and X-ray photoelectron-spectroscopy[J]. J Phys Chem, 1991, 95(24): 9928-9937.

    27. [27]

      [27] ALBONETTI S, BLASIOLI S, BRUNO A, MENGOU J E, TRIFIRÒ F. Effect of silica on the catalytic destruction of chlorinated organics over V2O5/TiO2 catalysts[J]. Appl Catal B: Environ, 2006, 64(1/2): 1-8.

    28. [28]

      [28] SCHIMMOELLER B, SCHULZ H, RITTER A, REITZMANN A,KRAUSHAAR-CZARNETZKI B, BAIKER A, PRATSINIS S E. Structure of flame-made vanadia/titania and catalytic behavior in the partial oxidation of O-xylene[J]. J Catal, 2008, 256(1): 74-83.

    29. [29]

      [29] WENT G T, OYAMA S T, BELL A T. Laser Raman spectroscopy of supported vanadium oxide catalysts[J]. J Phys Chem, 1990, 94(10): 4240-4246.

    30. [30]

      [30] MAGG N, IMMARAPORN B, GIORGI J B, SCHROEDER T, BÄUMER M, DÖBLER J, WU Z L, KONDRATENKO E, CHERIAN M, BAERNS M, STAIR P C, SAUER J, FREUND H J. Vibrational spectra of alumina- and silica-supported vanadia revisited: An experimental and theoretical model catalyst study[J]. J Catal, 2004, 226(1): 88-100.

    31. [31]

      [31] WU Z L, STAIR P C, RUGMINI S, JACKSON S D. Raman spectroscopic study of V/θ-Al2O3 catalysts: Quantification of surface vanadia species and their structure reduced by hydrogen[J]. J Phys Chem C, 2007, 111(44): 16460-16469.

    32. [32]

      [32] GUO X Y, BARTHOLOMEW C, HECKER W, BAXTER L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B: Environ, 2009, 92(1/2): 30-40.

    33. [33]

      [33] SILVERSMIT G, DEPLA D, POELMAN H, MARIN G B, GRYSE R D, Determination of the V 2p XPS binding energies for different vanadium oxidation states(V5+ to V0+)[J]. J Electron Spectrosc, 2004, 135(2/3): 167-175.

    34. [34]

      [34] ZHANG S, ZHONG Q. Promotional effect of WO3 on O2- over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. J Mol Catal A, 2013, 373: 108-113.

    35. [35]

      [35] BROCLAWIK E, GORA A, NAJBAR M. The role of tungsten in formation of active sites for no SCR on the V-W-O catalyst surface-Quantum chemical modeling(DFT)[J]. J Mol Catal A, 2001, 166(1): 31-38.

    36. [36]

      [36] CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NO<em>x by NH3[J]. Chem Eng J, 2011, 170(2/3): 531-537.

    37. [37]

      [37] TANG X F, LI Y G, HUANG X M, XU Y D, ZHU H Q, WANG J G, SHEN W J. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature[J]. Appl Catal B: Environ, 2006, 62(3/4): 265-273.

    38. [38]

      [38] HAMOUDI S, LARACHI F, ADNOT A, SAYARI A. Characterization of spent MnO2/CeO2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS[J]. J Catal, 1995, 185(2): 333-344.

    39. [39]

      [39] CHEN M, ZHENG X M. Effect of promoter thallium for a novel selectivity oxidation catalyst studied by X-ray photoelectron spectroscopy[J]. J Mol Catal A, 2003, 201(1/2): 161-166.

    40. [40]

      [40] JING L Q, XU Z L, SUN X J, SHANG J, CAI W M. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Appl Surf Sci, 2001, 180(3/4): 308-314.

    41. [41]

      [41] KANG M, PARK E D , KIM J M , YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269.

    42. [42]

      [42] ZHU Y H, HAN W M, LI H, WAN H L. Selective modification of surface and bulk V5+/V4+ ratios and its effects on the catalytic performance of Mo-V-Te-O catalysts[J]. J Catal, 2007, 246(2): 382-389.

    43. [43]

      [43] CHARY K V R, RAMESH K, NARESH D, RAO P V R, RAO A R, RAO V V. The effect of zirconia polymorphs on the structure and catalytic properties of V2O5/ZrO2 catalysts[J]. Catal Today, 2009, 141(1/2): 187-194.

    44. [44]

      [44] MARTÍNEZ-HUERTA M V, GAO X, TIAN H, WACHS I E, FIERRO J L G, BAÑARES M A. Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity[J]. Catal Today, 2006, 118(3/4): 279-287.

    45. [45]

      [45] HELD A, J. KOWALSKA-KUS, NOWINSKA K. Epoxidation of propene on vanadium species supported on silica supports of different structure[J]. Catal Commun, 2012, 17: 108-113.

    46. [46]

      [46] CRISTALLO G, RONCARI E, RINALDO A, TRIFIRO F. Study of anatase-rutile transition phase in monolithic catalyst V2O5/TiO2 and V2O5-WO3/TiO2[J]. Appl Catal A: Gen, 2001, 209(1/2): 249-256.

    47. [47]

      [47] LI Q, HOU X X, YANG H, MA Z X, ZHENG J W, LIU F, ZHANG X B, YUAN Z Y. Promotional effect of CeOx for NO reduction over V2O5/TiO2-carbon nanotube composites[J]. J Mol Catal A: Chem, 2012, 356(1): 121-127.

    48. [48]

      [48] KHODAKOV A, OLTHOF B, BELL A T, IGLESIA E. Structure and catalytic properties of supported vanadium oxides: Support effects on oxidative dehydrogenation reactions[J]. J Catal, 1999, 181(2): 205-216.

    49. [49]

      [49] CHOI E Y, NAM I S, Gul KIM Y G. TPD study of mordenite-type zeolites for selective catalytic reduction of NO by NH3[J]. J Catal, 1996, 161(2): 597-604.

    50. [50]

      [50] ROY S, HEDGE M S, MADRAS G. Catalysis for NOx abatement[J]. Appl Energy, 2009, 86(11): 2283-2297.

    51. [51]

      [51] CHOI S H, CHO S P, LEE JY, HONG S H, HONG S C, HONG S I. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature[J]. J Mol Catal A, 2009, 304(1/2): 166-173.

    52. [52]

      [52] LONG R Q, YANG R T. Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. J Catal, 2000, 194(1): 80-90.

    53. [53]

      [53] TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on line fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219.

    54. [54]

      [54] TOPSØE N Y, TOPSE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction of nitric oxide by ammonia I: Combined temperature programmed in situ FTIR and on-line mass spectrascopy studies[J]. J Catal, 1995, 151(1): 226-240.

    55. [55]

      [55] YANG R T, LI W B, CHEN N. Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate[J]. Appl Catal A: Gen, 1998, 169(2): 215-225.

    56. [56]

      [56] BUSCAu G, LITTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1988, 18(1/2): 1-36.

    57. [57]

      [57] KOBAYASHI M, KUMA R, MASAKI S, SUGISHIMA N. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2005, 60(3/4): 173-179.

    58. [58]

      [58] KORANNE M M, GOODWIN J G, MARCELIN G. Oxygen involvement in the partial oxidation of methane on supported and unsupported V2O5[J]. J Catal, 1994, 148(1): 369-377.

    59. [59]

      [59] WENT G T, LEU L J, ROSIN R R, BELL A T. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3[J]. J Catal, 1992, 134(2): 492-505.

    60. [60]

      [60] LIETTI L, FORZATTI P. Temperature programmed desorption/reaction of ammonia over V2O5/TiO2 De-NOxing catalysts[J]. J Catal, 1994, 147(1): 241-249.

    61. [61]

      [61] WU X D, YU W C, SI Z C, WENG D. Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride[J]. Front Env Sci Eng, 2013, 7(3): 420-427.

    62. [62]

      [62] CHEN J P, YANG R T. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal A: Gen, 1992, 80(1): 135-148.

    63. [63]

      [63] KAMASAMUDRAM K, CURRIER N W, CHEN X, YEZERETS A. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol[J]. Catal Today, 2010, 151(3/4): 212-222.

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Xinlin ZhangCheng TangHaitao LiJie SunAijun DuMinghong WuHaijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    9. [9]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    12. [12]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    13. [13]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    14. [14]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    15. [15]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    16. [16]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    17. [17]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    20. [20]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return