Citation: KONG Zhi-jian, WANG Cheng, DING Zheng-nan, CHEN Yin-fei, ZHANG Ze-kai. Li-modified MnO2 catalyst and LiMn2O4 for selective catalytic reduction of NO with NH3[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1447-1454. shu

Li-modified MnO2 catalyst and LiMn2O4 for selective catalytic reduction of NO with NH3

  • Corresponding author: ZHANG Ze-kai, 
  • Received Date: 10 September 2014
    Available Online: 5 November 2014

  • LiMn2O4 prepared by high temperature solid state reaction, pechini, and citric acid coordination methods was applied in selective catalytic reduction (SCR) of NO with NH3. MnO2 prepared by high temperature solid state reaction method and the activity was tested as a comparsion. The catalysts were characterized by N2 adsorption-desorption, scanning electron microscopy, X-ray diffraction, H2 temperature-programmed reduction, NH3 temperature-programmed desorption, NO temperature-programmed desorption, and X-ray photoelectron spectroscopy. The results showed that high-temperature activity of SCR were improved after the introduction of Li into MnO2. NO conversion on the LiMn2O4 prepared by pechini method was above 90% in the range of 130~260 ℃; NO conversion on the LiMn2O4 by high temperature solid state reaction method could be kept above 90% in the range of 90~310 ℃; while the temperature window of MnO2 was only 140~280 ℃. Compared with MnO2, LiMn2O4 crystal structure not only keeps more manganese cations at a relatively low valence of Mn3+, but also adjusts surface active oxygen. Meanwhile, the existence of Li adjusts surface-acid sites of LiMn2O4, thus alleviates the unselective oxidation of NH3 in the high temperature, broadens the operating temperature window of NH3-SCR reaction, and improves the catalyst tolerance of SO2.
  • 加载中
    1. [1]

      [1] BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1/2): 1-36.

    2. [2]

      [2] LUCA L, ISABELLA N, FORZATTI P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts[J]. Top Catal, 2000, 11/12(1/4): 111-122.

    3. [3]

      [3] BRANDENBERGER S, KROCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008, 50(4): 492-531.

    4. [4]

      [4] LI J H, CHANG H Z, MA L, HAO J M, YANG RT. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review [J]. Catal Today, 2011, 175(1): 147-156.

    5. [5]

      [5] PENA D A, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. I. Evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431.

    6. [6]

      [6] TANG X L, HAO J M, XU W G, LI J H. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catal Commun, 2007, 8(3): 329-334.

    7. [7]

      [7] KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269.

    8. [8]

      [8] QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 2004, 51(2): 93-106.

    9. [9]

      [9] LONG R Q, YANG R T, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts[J]. Chem Commun, 2002, 3: 452-433.

    10. [10]

      [10] CHEN Z H, YANG Q, LI H, LI X H, WANG L F, TSANG S C. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. J Catal, 2010, 276(1): 56-65.

    11. [11]

      [11] WAN Y P, ZHAO W R, TANG Y, LI L, WANG H J, CUI Y L, GU J L, LI Y S SHI J L. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Appl Catal B: Environ, 2014, 148-149: 114-122.

    12. [12]

      [12] KANG M, PARK E D, KIM J M, YIE J E. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today, 2006, 111(3/4): 236-241.

    13. [13]

      [13] LIAN Z H, LIU F D, HE H, SHI X Y, MO J S,WU Z B. Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Chem Eng J, 2014, 250: 390-398.

    14. [14]

      [14] CASAPU M, KROCHER O, MEHRING M, NACHTEGAAL M, BORA C, HARFOUCHE M, GROLIMUND D. Characterization of Nb-Containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2010, 114(21): 9791-9801.

    15. [15]

      [15] MASQUELIER C, TABUCHI M, ADO K, KANNO R, KOBAYASHI Y, MAKI Y, NAKAMURA O, GOODENOUGH J B. Chemical and magnetic characterization of spinel materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 system[J]. J Solid State Chem, 1996, 123(2): 255-266.

    16. [16]

      [16] GADJOV H, GOROVA M, KOTZEVA V, AVDEEV G, UZUNOVA S, KOVACHEVE D. LiMn2O4 prepared by different methods at identical thermal treatment conditions: Structural, morphological and electrochemical characteristics[J]. J Power Sources, 2004, 134(1): 110-117.

    17. [17]

      [17] YANG S J, WANG C Z, LI J H,YAN N Q, MA L, CHANG H Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study[J]. Appl Catal B: Environ, 2011, 110: 71-80.

    18. [18]

      [18] THACKERAY M M, ROSSOUW M H, GUMMOW R J, LILES D C, PEARCE K, KOCK A D , DAVID W I F, HULLS S. Ramsdellite-MnO2 for lithium batteries: The ramsdellite to spinel transformation[J]. Electrochim Acta, 1993, 38(9): 1259-1267.

    19. [19]

      [19] WEI Q L, WANG X Y, YANG X K, SHU H B, JU B W, HU B N, SONG Y F. The effects of crystal structure of the precursor MnO2 on electrochemical properties of spinel LiMn2O4[J]. J Solid State Electrochem, 2012, 16(7): 3651-3659.

    20. [20]

      [20] ZHANG R D, YANG W, LUO N, LI P, LEI Z G, CHEN B H. Low-temperature NH3-SCR of NO by lanthanum manganite perovskites: Effect of A-/B-site substitution and TiO2/CeO2 support[J]. Appl Catal B: Environ, 2014, 146: 94-104.

    21. [21]

      [21] KAPTEIJN F, SINGOREDJO L, ANDREINI, A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Cata B: Environ, 1994, 3(2/3): 173-189.

    22. [22]

      [22] TANG X, LI J, SUN L, HAO J M. Origination of N2O from NO reduction by NH3 over α-MnO2 and β-Mn2O3[J]. Appl Catal B: Environ, 2010, 99(1/2): 156-162.

    23. [23]

      [23] TIAN W, YANG H S, FAN X Y, ZHANG X B. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. J Hazardous Mater, 2011, 188(1/3): 105-109.

    24. [24]

      [24] GROSSALE A, NOVA I, TRONCONI E, CHATTERJEE D, WEIBEL M. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM-5 investigated by transient reaction analysis [J]. J Catal, 2008, 256(2): 312-322.

    25. [25]

      [25] ARENA F, TORRE T, RAIMONDO C, PARMALIANA A. Structure and redox properties of bulk and supported manganese oxide catalysts[J]. Phys Chem Chem Phys, 2001, 10: 1911-1917.

    26. [26]

      [26] ROY S, VISWANATH B, HEDGE M S, MADRS G. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu)[J]. J Phys Chem C, 2008, 112(15): 6002-6012.

    27. [27]

      [27] LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204.

    28. [28]

      [28] MARBAN G, VALDES-SOLIS T, FUERTES A, Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4, role of surface NH3 species: SCR mechanism[J]. J Catal, 2004, 226(1): 138-155.

    29. [29]

      [29] 陈婷, 管斌, 林赫, 朱霖. 原位漫反射傅里叶变换红外光谱研究锰铁基催化剂上低温选择性催化还原反应机理[J]. 催化学报, 2014, 35(3): 294-301.) (CHEN Ting, GUAN Bin, LIN He, ZHU Lin. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301.)

    30. [30]

      [30] JIN R B, LIU Y, WU Z B, WANG H Q, GU T T. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst[J]. Catal Today, 2010, 153(3/4): 84-89.

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    3. [3]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    16. [16]

      Kun ChenHuimin LinXin PengZiying WuJingyue DaiYi SunYaxuan FengZiyi HuangZhiqiang YuMeng YuGuangyu YaoJigang WangIn situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(0)
  • Abstract views(310)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return