Citation: LI Tao, WANG Sheng, GAO Dian-nan, WANG Shu-dong. Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1440-1446. shu

Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide

  • Corresponding author: WANG Sheng,  WANG Shu-dong, 
  • Received Date: 6 June 2014
    Available Online: 7 August 2014

  • A series of Ru/Ce0.8Zr0.2O2 catalysts were prepared by the impregnation method with Ce0.8Zr0.2O2 homoprecipitated and calcined at different temperatures as supports. The supports and the catalysts were characterized with TG-DSC, BET and H2-TPR techniques. It was shown that the Ce0.8Zr0.2O2 calcined at 500 ℃ formed Ce-Zr solid solution and had a proper surface area and pore opening and a weak interaction with Ru species, leading to a significant increase in the catalytic activity. A suitable reduction methods promoted distribution of active species. The Ru/Ce0.8Zr0.2O2 prepared with the Ce0.8Zr0.2O2 calcined at 500 ℃ showed high activity after calcination at 400 ℃ and successive reduction with H2N·NH2·H2O and H2. It gave a H2 conversion of 93.57%, approaching to the equilibrium value under the conditions of 290 ℃, 0.1 MPa, 10 000 h-1 and H2/CO2 mol ratio of 3.5.
  • 加载中
    1. [1]

      [1] RAATSCHEN W, PREISS H. Potential and benefits of closed loop ECLS systems on the ISS[J]. Acta Astronaut, 2001, 48(5/12): 411-419.

    2. [2]

      [2] DRAYER G E, HOWARD A M. Modeling and simulation of an aquatic habitat for bioregenerative life support research[J]. Acta Astronaut, 2014, 93: 138-147.

    3. [3]

      [3] AYDOGAN-CREMASCHIA S, ORCUNB S, BLAUB G, PEKNYA J F, REKLAITISA G V. A novel approach for life-support-system design for manned space missions[J]. Acta Astronaut, 2009, 65(3/4): 330-346.

    4. [4]

      [4] BROOKS K P, HUA J L, ZHU H Y, KEE R J. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors[J]. Chem Eng Sci, 2007, 62(4): 1161-1170.

    5. [5]

      [5] 周抗寒, 傅岚, 韩永强, 李俊荣. 再生式环控生保技术研究及进展[J]. 航天医学与医学工程, 2003, 16(S): 566-572. (ZHOU Kang-han, FU Lan, HAN Yong-qiang, LI Jun-rong. Research and development of technique of regenerative environmental control and life support system[J]. Sapce Medicine & Medical Engineering, 2003, 16(S): 566-572.)

    6. [6]

      [6] KENN F. New concepts for the avoidance or utilization of methane in life support systems[J]. Adv Space Res, 2011, 48(3): 457-464.

    7. [7]

      [7] RAATSCHEN W, PREISS H. Potential and benefits of closed loop ECLS systems on the ISS[J]. Acta Astronaut, 2001, 48(5/12): 411-419.

    8. [8]

      [8] 孟运余, 尚传勋. 二氧化碳甲烷化还原技术研究[J]. 航天医学与医学工程, 1994, 7(2): 115-120. (MENG Yun-yu, SHANG Chuan-xun. A study on CO2 methanation reduction technology[J]. Space Medicine & Medical Engineering, 1994, 7(2): 115-120.)

    9. [9]

      [9] 刘静霞, 侯文华. CO2还原钌催化剂的研究[J]. 航天医学与医学工程, 2004, 17(6): 457-460. (LIU Jing-xia, HOU Wen-hua. Study on Ru-based catalyst used in reductive reaction of CO2[J].Space Medicine & Medical Engineering, 2004, 17(6): 457-460.)

    10. [10]

      [10] LUNDE P J, KESTER F L. Carbon dioxide methanation on a ruthenium catalyst[J]. Ind Eng Chem Process Des Dev, 1974, 13(1): 21-33.

    11. [11]

      [11] PRAIRIE M R, RENKEN A, HIGHFIELD J G, THAMPI K R, GRATZEL M. A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium[J]. J Catal, 1991, 129(1): 130-44.

    12. [12]

      [12] SHARMA S, HU Z P, ZHANG P, MCFARLAND E W, METIU H. CO2 methanation on Ru-doped ceria[J]. J Catal, 2011, 278(2): 297-309.

    13. [13]

      [13] LI D, ICHIKUNI N, SHIMAZU S, UEMATSU T. Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal-support interaction[J]. Appl Catal A: Gen, 1999, 180(1/2): 227-235.

    14. [14]

      [14] 潘秋实. Ni/CeZrO4催化剂上CO2甲烷化反应及其机理研究[D]. 北京: 中国科学院大学, 2014. (PAN Qiu-shi. Studies on the reaction and mechanism of CO2 methanation on Ni/CeZrO4 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2014.)

    15. [15]

      [15] MCKELLAR M G. Mathematical analysis of high-temperature Co-electrolysis of CO2 and O2 production in closed-loop atmosphere revitalization system[R]. Idaho National Laboratory, 2010.

    16. [16]

      [16] 余建强, 费超, 王平海, 曹峻清. 影响Ru/C催化剂性能的若干因素[J]. 稀有金属材料与工程, 1997, 26(6): 52-55. (YU Jian-qiang, FEI Chao, WANG Ping-hai, CAO Jun-qing. Some factors affecting the properties of Ru/C catalysts[J]. Rare Metal Materials and Engineering, 1997, 26(6): 52-55.)

    17. [17]

      [17] MILLS G A, STEFFGEN F W. Catalytic methanation[J]. Catal Revs, 1973, 8(1): 159-210.

    18. [18]

      [18] MAZZIERI V, COLOMA-PASCUAL F, ARCOYA A, L'ARGENTIèREA P C, FIGOLI N S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts[J]. Appl Surf Sci, 2003, 210(3/4): 222-230.

    19. [19]

      [19] KOOPMAN P G J, KIEBOOM A P G, VAN BEKKUM H. Activation of ruthenium on silica hydrogenation catalysts[J]. React Kinet Catal Lett, 1978, 8(3): 389-393.

    20. [20]

      [20] LAWRENCE P B. Leading edge catalyis research[M]. Nova Science Publishers Inc, 2005.

    21. [21]

      [21] KOOPMAN P G J, KIEBOOM A P G, VAN BEKKUM H. Characterization of ruthenium catalysts as studied by temperature programmed reduction[J]. J Catal, 1981, 69(1): 172-179.

    22. [22]

      [22] BETANCOURT P, RIVES A, HUBAUT R, SCOTT C E, GOLDWASSERA J. A study of the ruthenium-alumina system[J]. Appl Catal A: Gen, 1998, 170(2): 307-314.

    23. [23]

      [23] MADHAVARAMA H, IDRISSA H, WENDTB S, KIMB Y D, KNAPPB M, OVERB H, AβMANNC J, LÖFFLERC E, MUHLERC M. Oxidation reactions over RuO2: A comparative study of the reactivity of the(110) single crystal and polycrystalline surfaces[J]. J Catal, 2002, 202(2): 296-307.

    24. [24]

      [24] BALINTA I, MIYAZAKIB A, AIKAB K I. Methane reaction with NO over alumina-supported Ru nanoparticles[J]. J Catal, 2002, 207(1): 66-75.

    25. [25]

      [25] 段世清, 胡兴元, 万体智. TPD和HOT法研究铂原子簇催化剂表面性质[J]. 天然气化工, 1992, 17(1): 3-6. (DUAN Shi-qing, HU Xing-yuan, WAN Ti-zhi. Studies on the platinum clusters surface properties of the catalysts by TPD and HOT[J]. Natural Gas Chemical Industry, 1992, 17(1): 3-6.)

    26. [26]

      [26] 李新生, 辛勤, 郭燮贤. 利用程序升温还原方法研究钴、钌、钼加氢脱硫催化剂氧化态的还原过程[J]. 燃料化学学报, 1992, 20(4): 435-439. (LI Xin-sheng, XIN Qin, GUO Xie-xian. Temperature programmed reduction of cobalt, ruthenium and molybdenum catalysts for hydrodesulfurization[J]. Journal of Fuel Chemistry and Technology, 1992, 20(4): 435-439.)

    27. [27]

      [27] 施介华, 徐慧珍. 热处理对负载Pd-Pt双金属及其单金属催化剂的还原性能的影响[J]. 石油化工, 1990, 19(10): 668-672. (SHI Jie-hua, XU Hui-zhen. Effect of thermal treatment on reducibility of Pd, Pt, and Pd-Pt supported on Al2O3[J]. Petrochemical Technology, 1990, 19(10): 668-672.)

    28. [28]

      [28] OVE H. Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review[J]. Electrochim Acta, 2013, 93(30): 314-333.

    29. [29]

      [29] YU J, MAO D, HAN L, GUO Q, LU G. Synthesis of C2 oxygenates from syngas over monodispersed SiO2 supported Rh-based catalysts: Effect of calcination temperature of SiO2[J]. Fuel Process Technol, 2013, 106(2): 344-349.

    30. [30]

      [30] ARNOLDY P, MOULIJN J A. Temperature-programmed reduction of CoO/Al2O3 catalysts[J]. J Catal, 1985, 93(1):38-54.

    31. [31]

      [31] 张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰. 沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 催化学报, 2012, 33(12): 1958-1964. (ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J]. Chinese Journal of Catalysis, 2012, 33(12): 1958-1964.)

    32. [32]

      [32] 梁东白, 吴荣安, 白玉珩, 胡爱华, 赵谦思, 冯喜云, 林励吾. 一氧化碳加氢合成烃类产物的研究Ⅰ. 载体效应对Ru催化剂催化性能的影响[J], 燃料化学学报, 1984, 12(2): 97-105. (LIANG Dong-bai, WU Rong-an, BAI Yu-heng, HU Ai-hua, ZHAO Qian-si, FENG Xi-yun, LIN Li-wu. Investigations on the synthesis of hydrocarbons by carbon monoxide hydrogenation I. Influence of the support effect on the catalytic properties of ruthenium catalysts[J]. Journal of Fuel Chemistry and Technology, 1984, 12(2): 97-105.)

    33. [33]

      [33] OVERA H, BALMESB O, LUNDGRENC E. Direct comparison of the reactivity of the non-oxidic phase of Ru(0001) and the RuO2 phase in the CO oxidation reaction[J]. Surf Sci, 2009, 603(2): 298-303.

    34. [34]

      [34] 宫立倩, 陈吉祥, 李正, 张继炎, 刘季. 还原方式及还原温度对甲烷部分氧化镍催化剂结构和反应性能的影响[J]. 燃料化学学报, 2008, 36(2): 192-196. (GONG Li-qian, CHEN Ji-xiang, LI Zheng, ZHANG Ji-yan, LIU Ji. Effect of reduction method and temperature on structure and performance of nickel-based catalysts for partial oxidastion of methane[J]. Journal of Fuel Chemistry and Technology, 2008, 36(2): 192-196.)

    35. [35]

      [35] VENUGOPAL A, SCURRELL M S. Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water-gas shift reaction[J]. Appl Catal A: Gen, 2004, 258(2): 241-249.

    36. [36]

      [36] 刘化章. 氨合成催化剂-实践与理论[M]. 化学工业出版社, 2007. (LIU Hua-zhang. Ammonia synthesis catalyst-theory and practice[M]. Chemical industry press, 2007.)

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(408)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return