Citation: FANG Tian-xiang, HOU Pei-dong, JIANG Xing-jia, YANG Jian-li. Study on alcoholysis of pine sawdust in ethylene glycol and alcoholysis mechanism[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1431-1439. shu

Study on alcoholysis of pine sawdust in ethylene glycol and alcoholysis mechanism

  • Corresponding author: FANG Tian-xiang, 
  • Received Date: 8 April 2014
    Available Online: 30 May 2014

    Fund Project: 国家自然科学青年基金(21206186)。 (21206186)

  • The alcoholysis of pine sawdust with acidified ethylene glycol (EG) as solvent was investigated; the influence of reaction temperature and time on the conversion of pine sawdust was examined. The alcoholysis residual was characterized by thermogravimetry (TG), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and X-ray diffraction (XRD), whereas the composition and properties of hexane insoluble components (HIS) and hexane soluble ones (HS) were determined by FT-IR and gas chromatography-mass spectrometry (GC-MS). The results showed that the conversion of pine sawdust reaches a maximum of 95.3% at 160 ℃ after reaction for 90 min. By the alcoholysis, the amorphous components of cellulose and lignin were decomposed and the surface structure of alcoholysis residual is destructed. The hexane insoluble components are composed of compounds with oxygen-bearing functional groups such as hydroxyl, methoxyl and ether, whereas the hexane soluble components consist of mainly phthalic acid esters, methyl stearate, 2-methyl propyl caproate, 2-methyl propionic acid, polyethylene glycol and unreacted EG. The esterification of EG with carboxylic acid, derived from pine sawdust, can improve the stability of liquid product and promote the alcoholysis of pine sawdust, whereas the self-condensation of EG, forming polyethylene glycol, may increase the consumption of EG.
  • 加载中
    1. [1]

      [1] BP Statistical Review of World Energy[Z]. 2013. 6.

    2. [2]

      [2] 吕卫军. 生物质和生物质能的未来[J]. 造纸信息, 2013, (3). (LV Wei-jun, The future of biomass and biomass energy[J]. China Paper Newsletter, 2013, (3).)

    3. [3]

      [3] LE VAN MAO R, ZHAO Q, DIMA G, PETRACCONE D. New Process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters usinga unique one-pot system of reaction and product extraction[J]. Catal Lett, 2011, 141(2): 271-276.

    4. [4]

      [4] BUNGAY R R. Biomass refining[J]. Science, 1982, 218(4573): 643-646.

    5. [5]

      [5] BALIBAN R C, ELIA J A, FLOUDAS C A. Biomass to liquid transportation fuels (BTL) systems: Process synthesis and global optimization framework[J]. Energy Environ Sci, 2013, 6(1): 267-287.

    6. [6]

      [6] METTLER M S, MUSHRIF S H, PAULSEN A D, JAVADEKAR A D, VLACHOS D G, DAUENHAUER P J. Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates[J]. Energy Environ Sci, 2012 , 5(1): 5414-5424.

    7. [7]

      [7] LIU Z G, ZHANG F S. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks[J]. Energy Convers Manage, 2008, 49(12): 3498-3504.

    8. [8]

      [8] SONGFENGWANG Q, CAI J Y, WANG Y H, ZHANG J J, YUA W Q, XU J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy Environ Sci, 2013, 6(3): 994-1007.

    9. [9]

      [9] YUEH R, ZHAO Y J, MA X B, GONG J L. Ethulene glycol: Properties, synthesis, and applications[J]. Chem Soc Rew, 2012, 41(11): 4218-4244.

    10. [10]

      [10] 谭洪. 生物质热裂解机理试验研究[D]. 浙江: 浙江大学, 2005. (TAN Hong. Experimental study on the mechanism of biomass pyrolysis[D]. Zhejiang: Zhejiang University, 2005.)

    11. [11]

      [11] WANG G, LI W, LI B Q, CHEN H K. TG study on pyrolysis of biomass and its three components under syngas[J]. Fuel, 2008, 87(4/5): 552-558.

    12. [12]

      [12] MESZAROS E, JAKAB E, VARHEGYI G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and therm behavior of extractive components of Robinia pesudoacacia[J]. J Anal Appl Pyrolysis, 2007, 79(1/2): 61-71.

    13. [13]

      [13] 张海荣, 庞浩, 石锦志, 廖兵. 木粉及其组分的多元醇酸催化热化学液化[J]. 林产化学与工业, 2012, 32(2): 14-20. (ZHANG Hai-rong, PANG Hao, SHI Jing-zhi, LIAO Bing. TG study on major biomass components and its liquefied residues from pyrolysis[J]. Chemical Industry and Engineering Progress, 2012, 32(2): 14-20.)

    14. [14]

      [14] WANG Z Y, CAO J Q, WANG J. Pyrolytic characteristic of pine wood in a slowly heating and gas sweeping fixed-bed reactor[J]. J Anal Appl Pyrolysis, 2009, 84(2): 179-184.

    15. [15]

      [15] RONCERO M B, TORRES A L, COLOM J F, VIDA T. TCF bleaching of wheat straw pulp using ozone and xylanase, Part A: Paper quality assessment[J]. Bioresource Technol, 2003, 87(3): 305-314.

    16. [16]

      [16] 王文亮, 虞宇翔, 常建民, 白甜甜. 两种树皮热解微晶结构及生物油组分对比[J]. 燃料化学学报, 2013, 41(11): 1310-1315. (WANG Wen-liang, YU Yu-xiang, CHANG Jian-min, BAI Tian-tian. Comparative analysis of micro-crystal structures and bio-oils from pyrolyisis of two barks[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1310-1315.)

    17. [17]

      [17] LIEVENS C, MOURANT D, HE M, GUNAWAN R, LI X, LI C Z. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils[J]. Fuel, 2011, 90(1): 3417-3423.

    18. [18]

      [18] 李坚. 木材波普学[M]. 北京: 科学出版社, 2003. (LI Jian. Wood spectroscopy[M]. Beijing: Science Press, 2003.)

    19. [19]

      [19] YAMADA T, ONO H. Characterization of the products resulting from ethylene glycol liquefaction of cellulose[J]. J Wood Sci, 2001, 47(6): 458-464.

    20. [20]

      [20] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 6(9): 4044-4098.

    21. [21]

      [21] ZOU X W, QIN T F, HUANG L H, ZHANG X, YANG Z, WANG Y. Mechanisms and main regularities of biomass liquefaction with alcoholic solvents[J]. Energy Fuels, 2009, 23(10): 5213-5218.

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    5. [5]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    12. [12]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    13. [13]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    15. [15]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(0)
  • Abstract views(481)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return