Citation: SHEN Ming-ke, HUANG Zhen-yu, WANG Zhi-hua, ZHOU Jun-hu. Prediction of coal ash deformation temperature based on Cuckoo Search and BP Neural Network[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(12): 1423-1430. shu

Prediction of coal ash deformation temperature based on Cuckoo Search and BP Neural Network

  • Corresponding author: HUANG Zhen-yu, 
  • Received Date: 25 June 2014
    Available Online: 7 August 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB214906)。 (973计划, 2012CB214906)

  • On the basis of 120 coal ash samples, a CSBP model based on BP(Back Propagation) Neural Network optimized by Cuckoo Search (CS) was proposed for predicting the ash deformation temperature of single coals, coals mixed with addictives and mixed coals. The thirteen chemical composition parameters and combined parameters were employed as inputs, and the ash deformation temperature was used as output of the CSBP model. The results show that whether single coal, coal mixed with additives or mixed coals, CSBP model has a better performance compared with BP model and the average relative errors are reduced to 3.11%, 4.08% and 4.22%, respectively. In addition, comparing the prediction results of three kinds of samples, both the CSBP model and BP model have higher prediction errors for coals mixed with addictives and mixed coals more than that for single coals.
  • 加载中
    1. [1]

      [1] 徐志明, 赵永萍, 文孝强, 程鹏, 袁帅. 一种预测煤灰变形温度的新方法[J]. 中国电机工程学报, 2011, 31(17): 38-43. (XU Zhi-ming, ZHAO Yong-ping, WEN Xiao-qiang, CHENG Peng, YUAN Shuai. A new method to predict deformation temperature of coal ash[J]. Proceedings of the CSEE, 2011, 31(17): 38-43.)

    2. [2]

      [2] LOLJA S A, HAXHI H, MARTIN D J. Correlations in the properties of Albanian coals[J]. Fuel, 2002, 81(9): 1095-1100.

    3. [3]

      [3] GRAY V R. Prediction of ash fusion temperature from ash composition for some New Zealand coals[J]. Fuel, 1987, 66(9): 1230-1239.

    4. [4]

      [4] LOLJA S A, HAXHI H, DHIMITRI R, DRUSHKU S, MALJA A. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel, 2002, 81(17): 2257-2261.

    5. [5]

      [5] 黄镇宇, 李燕, 赵京, 周志军, 周俊虎, 岑可法. 不同灰成分的低熔点煤灰熔融性调控机理研究[J]. 燃料化学学报, 2012, 40(9): 1038-1043. (HUANG Zhen-yu, LI Yan, ZHAO Jing, ZHOU Zhi-jun, ZHOU Jun-hu, CEN Ke-fa. Ash fusion regulation mechanism of coal with low melting point and different ash compositions[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1038-1043.)

    6. [6]

      [6] WINEGARTNER E C, RHODES B T. An empirical study of the relation of chemical properties to ash fusion temperatures[J]. J Eng Gas Turbines Power, 1975, 97(3): 395-403.

    7. [7]

      [7] 许洁, 刘霞, 李德侠, 周志杰, 王辅臣, 于广锁. 煤灰流动温度预测模型的研究[J]. 燃料化学学报, 2012, 40(12): 1415-1421. (XU Jie, LIU Xia, LI De-xia, ZHOU Zhi-jie, WANG Fu-chen, YU Guang-suo. Prediction model for flow temperature of coal ash[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1415-1421.)

    8. [8]

      [8] ÖZBAYOGLU G, EVREN ÖZBAYOGLU M. A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites[J]. Fuel, 2006, 85(4): 545-552.

    9. [9]

      [9] LIU Y P, WU M G, QIAN J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J]. Thermochim Acta, 2007, 454(1): 64-68.

    10. [10]

      [10] 王春林, 周昊, 李国能, 邱坤赞, 岑可法. 基于支持向量机与遗传算法的灰熔点预测[J]. 中国电机工程学报, 2007, 27(8): 11-15. (WANG Chun-lin, ZHOU hao, LI Guo-neng, QIU Kun-zan, CEN Ke-fa. Combining support vectormachine and genetic algorithm to predict ash fusion temperature[J]. Proceedings of the CSEE, 2007, 27(8): 11-15.)

    11. [11]

      [11] QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999, 78(8): 963-969.

    12. [12]

      [12] 禹立坚, 黄镇宇, 程军, 潘华引, 周俊虎, 岑可法. 配煤燃烧过程中煤灰熔融性研究[J]. 燃料化学学报, 2009, 37(2): 139-144. (YU Li-jian, HUANG Zhen-yu, CHENG Jun, PAN Hua-yin, ZHOU Jun-hu, CEN Ke-fa. Study on the coal ash fusibility during blending coal combusition[J]. Journal of Fuel Chemistry and Technology, 2009, 37(2): 139-144.)

    13. [13]

      [13] 马岩, 黄镇宇, 唐慧儒, 王智化, 周俊虎, 岑可法. 准东煤灰化过程中的矿物演变及矿物添加剂对其灰熔融特性的影响[J]. 燃料化学学报, 2014, 42(1): 20-25. (MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. Journal of Fuel Chemistry and Technology, 2014, 42(1): 20-25.)

    14. [14]

      [14] SEXTON R S, DORSEY R E. Reliable classification using neural networks: A genetic algorithm and backpropagation comparison[J]. Decis Support Syst, 2000, 30(1): 11-22.

    15. [15]

      [15] YANG X S, DEB S. Cuckoo search via Lévy flights[C]. Nature & Biologically Inspired Computing, World Congress on. IEEE, 2009: 210-214.

    16. [16]

      [16] 王众, 贾陈喜, 孙悦华. 中杜鹃寄生繁殖及雏鸟生长一例[J]. 动物学杂志, 2004, 39(1): 103-105. (WANG Zhong, JIA Chen-xi, SUN Yue-hua. Parasitized breeding and nestlings growth in oriental cuckoo[J]. Chinese Journal of Zoology, 2004, 39(1): 103-105.)

    17. [17]

      [17] VISWANATHAN G M, AFANASYEV V, BULDYREV S V, MURPHY, E J, PRINCE, P A, STANLEY, H E. Lévy flight search patterns of wandering albatrosses[J]. Nature, 1996, 381(6581): 413-415.

    18. [18]

      [18] VISWANATHAN G M, AFANASYEV V, BULDYREV S V, MURPHY, E J, PRINCE, P A, STANLEY, H E. Lévy flights in random searches[J]. Physica A: Stat Mech Appl, 2000, 282(1): 1-12.

    19. [19]

      [19] 李煜, 马良. 新型元启发式布谷鸟搜索算法[J]. 系统工程, 2012, 30(8): 64-69. (LI Yu, MA Liang. A new metaheuristic cuckoo search algorithm[J]. Systems Engineering, 2012, 30(8): 64-69.)

    20. [20]

      [20] VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for feedforward neural network training[J]. Int J Artif Intell Appl, 2011, 2(3): 36-43.

    21. [21]

      [21] 赵晓辉. 基于矿物质赋存形态与转变过程的炉内灰渣沉积研究[D]. 浙江大学, 2007. (ZHAO Xiao-hui. Study on ash deposition in boiler based on modes of occurrence and transformation of mineral matters[D]. Zhejiang University, 2007.)

    22. [22]

      [22] 卢丹. 不同预处理方法对煤结渣影响的实验研究[D]. 浙江大学, 2010. (LU Dan. A study on different pretreatment methods for preventing coal slagging[D]. Zhejiang University, 2010.)

    23. [23]

      [23] 赵京. 改善燃煤结渣以及燃烧特性的研究[D]. 浙江大学, 2011. (ZHAO Jing. The research on preventing slagging and improvement combustion characteristics of coal[D]. Zhejiang University, 2011).

  • 加载中
    1. [1]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Dongmei Xu . The Twists and Turns of Hair Metamorphosis. University Chemistry, 2024, 39(9): 81-84. doi: 10.12461/PKU.DXHX202403062

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    8. [8]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    9. [9]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    16. [16]

      Zhenyu Feng Zhaozhen Cao Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016

    17. [17]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(443)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return