Citation:
JI Hong-qiang, ZHANG Qiang, CHEN Lu, SHAN Hong-hong. Study on the reaction performance of methanol to aromatics over Zn/HZSM-5 catalysts with alumina[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(11): 1387-1393.
-
The present paper investigated the effect of Zn modified HZSM-5 catalysts on the reaction performance of methanol to aromatics with the presence of alumina. The catalysts were characterized by BET, XRD, Py-FTIR, NH3-TPD, and H2-TPR techniques, respectively. The experimental result demonstrated that the introduction of alumina produced mesopores in the HZSM-5 catalyst and strengthened the stability of Zn species on the surface of the catalyst. The introduction of Zn species broke the structure of HZSM-5 zeolite and changed the surface acidity of the catalyst. In addition, Zn species might contribute to the dehydrogenation reaction of MTA. Meanwhile, the subsequent aromatization process of olefins was impressed. Within the scope of this study, the maximum value of aromatic yield (C6~11) reached 21.0% when the loading of Zn was 0.5%. The aromatization of methanol is at the control of coke on the catalyst. However, the regenerated catalyst exhibited a higher aromatic yield.
-
-
-
[1]
[1] 田涛, 骞伟中, 孙玉建, 崔宇, 卢俨俨, 魏飞. Ag/ZSM-5催化剂上甲醇芳构化过程[J]. 现代化工, 2009, 29(1): 55-58.(TIAN Tao, QIAN Wei-zhong, SUN Yu-jian, CUI Yu, LU Yan-yan, WEI Fei. Aromatization of methanol on Ag/ZSM-5 catalyst[J]. Modern Chemical Industry, 2009, 29(1): 55-58.)
-
[2]
[2] FREEMAN D, WELLS RICHARD P K, HUTCHINGS G J. Methanol to hydrocarbons: Enhanced aromatic formation using a composite Ga2O3/H-ZSM-5 catalyst[J]. Chem Commun, 2001, (18): 1754-1755.
-
[3]
[3] FREEMAN D, WELLS RICHARD P K, HUTCHINGS G J. Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts[J]. J Catal, 2002, 205(2): 358-365.
-
[4]
[4] GIUSEPPE M G. Transformation of LPG into aromatic hydrocarbon and hydrogen over zeolite catalysts[J]. Catal Rev: Sci Eng, 1994, 36(2): 271-304.
-
[5]
[5] CHANG C D, SILVESTRIA J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47(2): 249-259.
-
[6]
[6] 王金英, 李文怀, 胡津仙. ZnHZSM-5上甲醇芳构化反应的研究[J]. 燃料化学学报, 2009, 37(5): 607-612.(WANG Jin-ying, LI Wen-huai, HU Jin-xian. Study of methanol to aromatics on ZnHZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 607-612.)
-
[7]
[7] 周建宏, 赵云, 宋金富, 艾沙·努拉洪, 胡佳, 陈黎行, 郭洪臣. 改性纳米HZSM-5沸石催化剂上C5-C8混合烷烃的芳构化反应[J]. 催化学报, 2008, 29(7): 665-670.(ZHOU Jian-hong, ZHAO Yun, SONG Jin-fu, AISHA·Nulaha, HU Jia, CHEN Li-xing, GUO Hong-chen. Aromatization of C5-C8 alkane mixture over modified nano-sized HZSM-5 zeolite catalysts[J]. Chinese Journal of Catalysis, 2008, 29(7): 665-670.)
-
[8]
[8] WANG T, TANG X P, HUANG X F, QIAN W Z, CUI Y, HUI X Y, YANG W, WEI F. Conversion of methanol to aromatics in fluidized bed reactor[J]. Catal Today, 2014, 233: 8-13.
-
[9]
[9] 张金贵, 骞伟中, 汤效平, 沈葵, 王彤, 黄晓凡, 魏飞. 甲醇芳构化中催化剂酸性对脱烷基、烷基化和异构化反应的影响[J]. 物理化学学报, 2013, 29(6): 1281-1288.(ZHANG Jin-gui, QIAN Wei-zhong, TANG Xiao-ping, SHEN Kui, WANG Tong, HUANG Xiao-fan, WEI Fei. Influence of catalysts acidity on dealkylation, isomerization and alkylation in MTA process[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1281-1288.)
-
[10]
[10] BJØRGEN M, JOENSEN F, SPANGSBERG HOLM M, OLSBYE U, LILLERUD K P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH[J]. Appl Catal A: Gen, 2008, 345(1): 43-50.
-
[11]
[11] WACHS I E. Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts[J]. Catal Today, 1996, 27(3): 437-455.
-
[12]
[12] 佘励勤, 王多才, 李宣文, 刘兴云, 韩明. 锌在ZnZSM-5沸石中的形态及其催化作用[J]. 物理化学学报, 1994, 10(3): 301-305.(SHE Li-qin, WANG Duo-cai, LI Xuan-wen, LIU Xing-yun, HAN Ming. The states of zinc in ZnZSM-5 and their catalysis[J]. Acta Physico-Chimica Sinica, 1994, 10(3): 301-305.)
-
[13]
[13] 桂建舟, 张晓彤, 胡之德, 孙兆林. 正己烷在ZnNi/HZSM-5上芳构化反应的研究[J]. 兰州大学学报(自然科学版), 2003, 39(5): 61-65.(GUI Jian-zhou, ZHANG Xiao-tong, HU Zhi-de, SUN Zhao-lin. A study of n-hexane aromatization on the ZnNi/HZSM-5 catalyst[J]. Journal of Lanzhou University (Natural Sciences), 2003, 39(5): 61-65.)
-
[14]
[14] MASALSKA A. Properties and activity of Al2O3+ZSM-5 supported Ni and NiRu catalysts in 1-Methylnaphthalene hydrogenation: Effect of Ni incorporation method and calcing procedure[J]. Catal Lett, 2009, 127(1/2): 158-166.
-
[15]
[15] 张欣, 徐广通, 邹亢, 黄南贵. S Zorb吸附剂中锌铝尖晶石形成原因的研究[J]. 石油学报(石油加工), 2012, 28(2): 242-247.(ZHANG Xin, XU Guang-tong, ZOU Kang, HUANG Nan-gui. Formation mechanism of gahnite in S Zorb sorbents[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(2): 242-247.)
-
[16]
[16] 程谟杰, 杨亚书. ZnHZSM-5上脱氢环化芳构化过程的探讨[J]. 分子催化, 1996, 10(6): 418-422.(CHENG Mo-jie, YANG Ya-shu. Study on dehydrocyclization and aromaization process over ZnHZSM-5 catalyst[J]. Journal of Molecular Catalysis (China), 1996, 10(6): 418-422.)
-
[17]
[17] BISCARDI J A, IGLESISA E. Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. J Catal, 1999, 182(1): 117-128.
-
[18]
[18] ONO Y, ADACHI H, SENODA Y. Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites[J]. J Chem Soc Faraday Trans 1: Phys Chem Cond Phas, 1988, 84(4): 1091-1099.
-
[19]
[19] BERNADT H, LIETZ G, VØELTER J. Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics: II. Nature of the active sites and their activation[J]. Appl Catal A: Gen, 1996, 146(2): 365-379.
-
[1]
-
-
-
[1]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[2]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[3]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[4]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[5]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[6]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[7]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[8]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[9]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[10]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[11]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[12]
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
-
[13]
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
-
[14]
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
-
[15]
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
-
[16]
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
-
[17]
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
-
[18]
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
-
[19]
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
-
[20]
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(438)
- HTML views(16)