Citation: ZHOU Hao, SU Ya-xin, QI Yue-zhou, LU Zhe-xing, DENG Wen-yi. Effect of water vapor on NO reduction by methane over iron[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1378-1386. shu

Effect of water vapor on NO reduction by methane over iron

  • Corresponding author: SU Ya-xin, 
  • Received Date: 3 June 2014
    Available Online: 25 July 2014

    Fund Project: 国家自然科学基金(51278095). (51278095)

  • The effect of water vapor on NO reduction by methane over iron was investigated at 300~1 100 ℃ in an electrically heated ceramic tubular flow reactor in both N2 and simulated flue gas atmospheres. The iron samples before and after reaction were characterized by XRD, SEM and XPS. The results demonstrated that water vapor has a small effect on NO reduction by methane over iron. In N2 atmosphere, water vapor is involved in the oxidation of iron; compared with that in the absence of water vapor, the NO reduction efficiency is decreased slightly when 2.5%~7% water vapor is added into the reaction stream. However, the NO reduction efficiency increases with the increase of water content from 2.5% to 7%, as water vapor may promote the oxidation of iron, forming porous iron surface. Methane is involved in the reduction of the iron oxides, leading to the formation of a dense layer of Fe3O4 and FeO, which may inhabit the interaction of NO with metallic iron and then decrease the NO reduction efficiency, as compared with that without methane. In the simulated flue gas atmosphere, water vapor promotes the NO reduction by methane over iron. When the excess air ratio is 0.7 in reaction zone (SR1) and 1.2 in burnout zone (SR2), the NO reduction efficiency at 1 050 ℃ is 96.7% in the presence of 7% water vapor, compared with the value of 90.6% in the absence of water vapor. SO2 causes a slight decrease of NO reduction. Long term test results showed that over iron at 1 050 ℃ in the simulated flue gas atmosphere containing 7% H2O and 0.02% SO2, NO reduction efficiency remains higher than 90% after reaction for 50 h in the presence of 1.14% methane.
  • 加载中
    1. [1]

      [1] PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4): 233-316.

    2. [2]

      [2] CENTI G, PERATHONER S. Introduction: State of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2[J]. Stud Surf Sci Catal, 2007, 171: 1-23.

    3. [3]

      [3] 陈树伟, 闫晓亮, 陈佳琪, 马静红, 李瑞丰. 富氧条件下Mn/ZSM-5选择催化CH4还原NO[J]. 催化学报, 2010, 31(9):1107-1114.(CHEN Shu-wei, YAN Xiao-liang, CHEN Jia-qi, MA Jing-hong, LI Rui-feng. Selective catalytic reduction of NO in excess oxygen by methane over Mn/ZSM-5 catalysts[J]. Chinese Journal of Catalysis, 2010, 31(9):1107-1114.)

    4. [4]

      [4] LI Y, ARMOR J N. Selective catalytic reduction of NOx with methane over metal exchanged zeolites[J]. Appl Catal B: Environ, 1993, 2(2/3): 239-256.

    5. [5]

      [5] LI Y, BATTAVIO P B, ARMOR J N. Effect of water-vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5[J]. J Catal, 1993, 142(2): 561-571.

    6. [6]

      [6] LÓNYI F, SOLT H E, VALYON J, BOIX A, GUTIERREZ L B. The SCR of NO with methane over In,H- and Co,In,H-ZSM-5 catalysts: The promotional effect of cobalt[J]. Appl Catal B: Environ, 2012, 117-118: 212-223.

    7. [7]

      [7] LÓNYI F, SOLT H E, PÁSZTI Z, VALYON J. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts[J]. Appl Catal B: Environ, 2014, 150-151: 218-229.

    8. [8]

      [8] CHEN S, YAN X, WANG Y, CHEN J, PAN,D MA J, LI R. Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta[J]. Catal Today, 2011, 175(1): 12-17.

    9. [9]

      [9] TRAA Y, BURGER B, WEITKAMPJ. Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons[J]. Microporous Mesoporous Mater, 1999, 30: 3-41.

    10. [10]

      [10] IWAMOTO M. Zeolites in environmental catalysis[J]. Stud Surf Sci Catal, 1994, 84: 1395-1410.

    11. [11]

      [11] TABATA T, KOKITSU M, OKADA O. Study on patent literature of catalysts for a new NOx removal process[J]. Catal Today, 1994, 22(1): 147-169.

    12. [12]

      [12] SHIMIZU K, SATSUMA A, HATTORI T. Selective catalytic reduction of NO by hydrocarbons on Ga2O3/Al2O3 catalysts [J]. Appl Catal B: Environ, 1998, 16(4): 319-326.

    13. [13]

      [13] ARMOR J N. NOx/hydrocarbon reactions over gallium loaded zeolites: A review[J]. Catal Today, 1996, 31(3/4):191-198.

    14. [14]

      [14] 荆国华, 李俊华, 杨栋, 郝吉明. 分子筛类催化剂上甲烷选择性催化还原NOx研究进展[J]. 化工进展, 2009, 28(3): 504-510.(Jing Guo-hua, Li Jun-hua, Yang Dong, Hao Ji-ming. Progress of selective catalytic reduction of NOx with methane over zeolite-based catalysts[J]. Chemical Industry and Engineering Progress, 2009, 28(3): 504-510.)

    15. [15]

      [15] RAO K N, HA H P. SO2 promoted alkali metal doped Ag/Al2O3 catalysts for CH4-SCR of NOx[J]. Appl Catal A: Gen, 2012, 433-434: 162-169.

    16. [16]

      [16] 荆国华, 李俊华, 杨栋, 郝吉明. 固体超强酸和金属氧化物类催化剂上CH4-SCR还原NOx研究进展[J]. 环境工程学报, 2010, 4(7): 1441-1447.(Jing Guo-hua, Li Jun-hua, Yang Dong, Hao Ji-ming. Progress on the selective catalytic reduction of NOx with methane over solid super acid and metal oxides-based catalysts[J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1441-1447.)

    17. [17]

      [17] 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报, 2013, 41(9): 1129-1135.(SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1129-1135.)

    18. [18]

      [18] 苏亚欣, 任立铭, 苏阿龙, 邓文义. 甲烷在金属铁及氧化铁表面还原NO的实验研究[J]. 燃料化学学报,2013, 41(11): 1393-1400. (SU Ya-xin, REN Li-ming, SU A-long, DENG Wen-yi. Experimental study on NO reduction by methane over iron and its oxides[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1393-1400.)

    19. [19]

      [19] 苏亚欣, 苏阿龙, 任立铭, 邓文义. SO2对甲烷在金属铁表面还原NO的影响[J]. 燃料化学学报, 2014, 42(3): 377-384.(SU Ya-xin, SU A-long, REN Li-ming, DENG Wen-yi. Effect of SO2 on NO reduction by methane over iron[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 377-384.)

    20. [20]

      [20] 苏亚欣, 苏阿龙, 成豪. 铁丝网卷还原NO的特性及CO气体的影响[J]. 应用基础与工程科学学报, 2013, 21(4): 638-646.(SU Ya-xin, SU A-long, CHENG Hao. Experimental study on effect of CO on NO reduction by iron mesh roll[J]. Journal of Basic Science and Engineering, 2013, 21(4): 638-646.)

    21. [21]

      [21] 游文章. 基础化学[M]. 北京: 化学工业出版社, 2010: 414.(YOU Wen-Zhang. Fundamental Chemistry[M]. Beijing: Chemical Industry Press, 2010: 414.) [22] PUJILAKSONO B, JONSSON T, HALVARSSON M, SVENSSON J E, JOHANSSON L G. Oxidation of iron at 400-600 ℃ in dry and wet O2[J]. Corros Sci, 2010, 52(5): 1560-1569.

    22. [22]

      [23] JONSSON T, PUJILAKSONO B, FUCHS A, SVENSSON J E, JOHANSSON L G, HALVARSSON M. The influence of H2O on iron oxidation at 600 ℃: A microstructural study [J]. Mater Sci Forum, 2008, 595-598: 1005-1012.

    23. [23]

      [24] JONSSON T, PUJILAKSONO B, HALLSTROMS, AGREN J, SVENSSON J E, JOHANSSON L G, HALVARSSON M. An ESEM in situ investigation of the influence of H2O on iron oxidation at 500 ℃[J]. Corros Sci, 2009, 51(9):1914-1924.

    24. [24]

      [25] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci, 2008, 254(8): 2441-2449.

    25. [25]

      [26] POULIN S, FRANCA R, MOREAU-BÉLANGER L, SACHER E. Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes[J]. J Phys Chem C, 2010, 114(24): 10711-10718.

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(0)
  • Abstract views(407)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return