Citation: LIN Xing-yi, ZHANG Yong, LI Ru-le, ZHAN Ying-ying, CHEN Chong-qi, YIN Ling. Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1351-1356. shu

Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction

  • Corresponding author: LIN Xing-yi, 
  • Received Date: 7 August 2014
    Available Online: 16 September 2014

    Fund Project:

  • The catalytic properties of ZnO-modified copper ferrite in water-gas shift (WGS) reaction were evaluated between 250 and 400 ℃. The Zn2.5-Cu/Fe (modified by 2.5% ZnO) showed high catalytic activity. The catalyst was characterized with XRD, SEM, H2-TPR and CO2-TPD techniques and N2 sorption experiment. It was shown that introduction of appropriate amounts of ZnO transformed the CuFe2O4 from the tetrahedral crystalline phase to the cubic, enhanced the CuFe2O4 reducibility, and increased the amount of weak and medium basic sites. As a consequence, the interaction between copper and iron species was improved and the catalytic activity was increased.
  • 加载中
    1. [1]

      [1] JIANG L, ZHU H, RAZZAQ R, ZHU M, LI C, LI Z. Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water-gas shift in an IGCC system[J]. Int J Hydrogen Energy, 2012, 37(21): 15914-15924.

    2. [2]

      [2] WINTER M, BRODD R. What are batteries, fuel cells, and supercapacitors[J]. Chem Rev, 2004, 104: 4245-4269.

    3. [3]

      [3] PEDERSEN-MJAANES H, CHAN L, MASTORAKOS E. Hydrogen production from rich combustion in porous media[J]. Int J Hydrogen Energy, 2005, 30(6): 579-592.

    4. [4]

      [4] KUARA H, HOCEVARA S, LEVECA J. Kinetics of the water-gas shift reaction over nano- structured copper-ceria catalysts[J]. Appl Catal B: Environ, 2006, 63(3/4): 194-200.

    5. [5]

      [5] OH S H, SINKEVITCH R M. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation[J]. J Catal, 1993, 142(1): 254-262.

    6. [6]

      [6] ESTRELLA M, BARRIO L, ZHOU G, WANG X, HANSON J C, FRENKEL A I, RODRIGUEZ J A. In situ characterization of CuFe2O4 and Cu/Fe3O4 water-gas shift catalysts[J]. J Phys Chem C, 2009, 113(32): 14411-14417.

    7. [7]

      [7] LIN X Y, ZHANG Y, YIN L, CHEN C Q, ZHAN Y Y, LI D L. Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite[J]. Int J Hydrogen Energy, 2014, 39(12): 6424-6432.

    8. [8]

      [8] FAUNGNAWAKIJ K, SHIMODA N, FUKUNAGA T, KIKUCHI R, EGUCHI K. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether[J]. Appl Catal B: Environ, 2009, 92(3/4): 341-350.

    9. [9]

      [9] KAMEOKA S, TANABE T, TSAI A P. Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4[J]. Appl Catal A: Gen, 2010, 375(1): 163-171.

    10. [10]

      [10] YANG S C, SU W N, LIN S D, RICK J, CHENG J H, LIU J Y, PAN C J, LIU D G, LEE J F, CHAN T S, SHEU H S, HWANG B J. Preparation of nano-sized Cu from a rod-like CuFe2O4: Suitable for high performance catalytic applications[J]. Appl Catal B: Environ, 2011, 106(3/4): 650-656.

    11. [11]

      [11] LI L, ZHANG Y, ZHENG Q. Water-gas shift reaction over aluminum promoted Cu/CeO2 nanocatalysts characterized by XRD, BET, TPR and cyclic voltammetry(CV)[J]. Catal Lett, 2007, 118(1/2): 91-97.

    12. [12]

      [12] TABAKOVA T, IDAKIEV V, PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Effect of additives on the WGS activity of combustion synthesized CuO/CeO2 catalysts[J]. Catal Commun, 2007, 8(1): 101-106.

    13. [13]

      [13] FAUNGNAWAKIJ K, KIKUCHI R, FUKUNAGA T, EGUCHI K. Stability enhancement in Ni-Promoted Cu-Fe spinel catalysts for dimethyl ether steam reforming[J]. J Phys Chem C, 2009, 113(43): 18455-18458.

    14. [14]

      [14] HUA J M, WEI K M, ZHENG Q, LIN X Y. Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water gas shift reaction[J]. Appl Catal A: Gen, 2004, 259(1): 121-130.

    15. [15]

      [15] SANGWICHIEN C, ARANOVICH G L, DONOHUE M D. Density functional theory predictions of adsorption isotherms with hysteresis loops[J]. Colloid Surface A, 2002, 206(1/3): 313-320.

    16. [16]

      [16] SHINAE J, SANG H J, RYONG R, MICHAL K, MIETEK J, ZHENG L, TETSU O, TERASAKI O. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc, 2000, 122: 10712-10713.

    17. [17]

      [17] KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem Mater, 2001, 13(10): 3169-3183.

    18. [18]

      [18] LI L, SONG L, WANG H, CHEN C Q, SHE Y S, ZHAN Y Y. Water-gas shift reaction over CuO/CeO2 catalysts: Effect of CeO2 supports previously prepared by precipitation with different precipitants[J]. Int J Hydrogen Energy, 2011, 36(15): 8839-8849.

    19. [19]

      [19] FAUNGNAWAKIJ K, KIKUCHI R, FUKUNAGA T. Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: Hydrogen reduction and metal dopant effects[J]. Catal Today, 2008, 138: 157-161.

    20. [20]

      [20] KHAN A, SMIRNIOTIS P G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction[J]. J Mol Catal A: Chem, 2008, 280(1/2): 43-51.

    21. [21]

      [21] REDDY G K, GUNASEKERA K, BOOLCHAND P, DONG J P G. High temperature water gas shift reaction over nanocrystalline copper codoped-modified ferrites[J]. J Phys Chem C, 2011, 115(15): 7586-7595.

    22. [22]

      [22] SAGATA K, IMAZU N, YAHIRO H. Study on factors controlling catalytic activity for low-temperature water-gas-shift reaction on Cu-based catalysts[J]. Catal Today, 2013, 201(1): 145-150.

    23. [23]

      [23] ISTADI,AMIN N A S. Synergistic effect of catalyst basicity and reducibility on performance of ternary CeO2-based catalyst for CO2 OCM to C2 hydrocarbons[J]. J Mol Catal A: Chem, 2006, 259(1/2): 61-66.

    24. [24]

      [24] NISHIDA K, ATAKE I, LI D L, SHISHIDO T, OUMI Y, SANO T, TAKEHIRA K. Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction: Catalyst preparation by adopting "memory effect" of hydrotalcite[J]. Appl Catal A: Gen, 2008, 337(1): 48-57.

  • 加载中
    1. [1]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    2. [2]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(409)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return