Citation: LIN Xing-yi, ZHANG Yong, LI Ru-le, ZHAN Ying-ying, CHEN Chong-qi, YIN Ling. Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1351-1356. shu

Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction

  • Corresponding author: LIN Xing-yi, 
  • Received Date: 7 August 2014
    Available Online: 16 September 2014

    Fund Project:

  • The catalytic properties of ZnO-modified copper ferrite in water-gas shift (WGS) reaction were evaluated between 250 and 400 ℃. The Zn2.5-Cu/Fe (modified by 2.5% ZnO) showed high catalytic activity. The catalyst was characterized with XRD, SEM, H2-TPR and CO2-TPD techniques and N2 sorption experiment. It was shown that introduction of appropriate amounts of ZnO transformed the CuFe2O4 from the tetrahedral crystalline phase to the cubic, enhanced the CuFe2O4 reducibility, and increased the amount of weak and medium basic sites. As a consequence, the interaction between copper and iron species was improved and the catalytic activity was increased.
  • 加载中
    1. [1]

      [1] JIANG L, ZHU H, RAZZAQ R, ZHU M, LI C, LI Z. Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water-gas shift in an IGCC system[J]. Int J Hydrogen Energy, 2012, 37(21): 15914-15924.

    2. [2]

      [2] WINTER M, BRODD R. What are batteries, fuel cells, and supercapacitors[J]. Chem Rev, 2004, 104: 4245-4269.

    3. [3]

      [3] PEDERSEN-MJAANES H, CHAN L, MASTORAKOS E. Hydrogen production from rich combustion in porous media[J]. Int J Hydrogen Energy, 2005, 30(6): 579-592.

    4. [4]

      [4] KUARA H, HOCEVARA S, LEVECA J. Kinetics of the water-gas shift reaction over nano- structured copper-ceria catalysts[J]. Appl Catal B: Environ, 2006, 63(3/4): 194-200.

    5. [5]

      [5] OH S H, SINKEVITCH R M. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation[J]. J Catal, 1993, 142(1): 254-262.

    6. [6]

      [6] ESTRELLA M, BARRIO L, ZHOU G, WANG X, HANSON J C, FRENKEL A I, RODRIGUEZ J A. In situ characterization of CuFe2O4 and Cu/Fe3O4 water-gas shift catalysts[J]. J Phys Chem C, 2009, 113(32): 14411-14417.

    7. [7]

      [7] LIN X Y, ZHANG Y, YIN L, CHEN C Q, ZHAN Y Y, LI D L. Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite[J]. Int J Hydrogen Energy, 2014, 39(12): 6424-6432.

    8. [8]

      [8] FAUNGNAWAKIJ K, SHIMODA N, FUKUNAGA T, KIKUCHI R, EGUCHI K. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether[J]. Appl Catal B: Environ, 2009, 92(3/4): 341-350.

    9. [9]

      [9] KAMEOKA S, TANABE T, TSAI A P. Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4[J]. Appl Catal A: Gen, 2010, 375(1): 163-171.

    10. [10]

      [10] YANG S C, SU W N, LIN S D, RICK J, CHENG J H, LIU J Y, PAN C J, LIU D G, LEE J F, CHAN T S, SHEU H S, HWANG B J. Preparation of nano-sized Cu from a rod-like CuFe2O4: Suitable for high performance catalytic applications[J]. Appl Catal B: Environ, 2011, 106(3/4): 650-656.

    11. [11]

      [11] LI L, ZHANG Y, ZHENG Q. Water-gas shift reaction over aluminum promoted Cu/CeO2 nanocatalysts characterized by XRD, BET, TPR and cyclic voltammetry(CV)[J]. Catal Lett, 2007, 118(1/2): 91-97.

    12. [12]

      [12] TABAKOVA T, IDAKIEV V, PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Effect of additives on the WGS activity of combustion synthesized CuO/CeO2 catalysts[J]. Catal Commun, 2007, 8(1): 101-106.

    13. [13]

      [13] FAUNGNAWAKIJ K, KIKUCHI R, FUKUNAGA T, EGUCHI K. Stability enhancement in Ni-Promoted Cu-Fe spinel catalysts for dimethyl ether steam reforming[J]. J Phys Chem C, 2009, 113(43): 18455-18458.

    14. [14]

      [14] HUA J M, WEI K M, ZHENG Q, LIN X Y. Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water gas shift reaction[J]. Appl Catal A: Gen, 2004, 259(1): 121-130.

    15. [15]

      [15] SANGWICHIEN C, ARANOVICH G L, DONOHUE M D. Density functional theory predictions of adsorption isotherms with hysteresis loops[J]. Colloid Surface A, 2002, 206(1/3): 313-320.

    16. [16]

      [16] SHINAE J, SANG H J, RYONG R, MICHAL K, MIETEK J, ZHENG L, TETSU O, TERASAKI O. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc, 2000, 122: 10712-10713.

    17. [17]

      [17] KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem Mater, 2001, 13(10): 3169-3183.

    18. [18]

      [18] LI L, SONG L, WANG H, CHEN C Q, SHE Y S, ZHAN Y Y. Water-gas shift reaction over CuO/CeO2 catalysts: Effect of CeO2 supports previously prepared by precipitation with different precipitants[J]. Int J Hydrogen Energy, 2011, 36(15): 8839-8849.

    19. [19]

      [19] FAUNGNAWAKIJ K, KIKUCHI R, FUKUNAGA T. Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: Hydrogen reduction and metal dopant effects[J]. Catal Today, 2008, 138: 157-161.

    20. [20]

      [20] KHAN A, SMIRNIOTIS P G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction[J]. J Mol Catal A: Chem, 2008, 280(1/2): 43-51.

    21. [21]

      [21] REDDY G K, GUNASEKERA K, BOOLCHAND P, DONG J P G. High temperature water gas shift reaction over nanocrystalline copper codoped-modified ferrites[J]. J Phys Chem C, 2011, 115(15): 7586-7595.

    22. [22]

      [22] SAGATA K, IMAZU N, YAHIRO H. Study on factors controlling catalytic activity for low-temperature water-gas-shift reaction on Cu-based catalysts[J]. Catal Today, 2013, 201(1): 145-150.

    23. [23]

      [23] ISTADI,AMIN N A S. Synergistic effect of catalyst basicity and reducibility on performance of ternary CeO2-based catalyst for CO2 OCM to C2 hydrocarbons[J]. J Mol Catal A: Chem, 2006, 259(1/2): 61-66.

    24. [24]

      [24] NISHIDA K, ATAKE I, LI D L, SHISHIDO T, OUMI Y, SANO T, TAKEHIRA K. Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction: Catalyst preparation by adopting "memory effect" of hydrotalcite[J]. Appl Catal A: Gen, 2008, 337(1): 48-57.

  • 加载中
    1. [1]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(388)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return