Citation: Sameh M. K. Aboul-Fotouh. Methanol conversion to DME as a blue fuel: The beneficial use of ultrasonic irradiation for the preparation of CuO/H-MOR nanocatalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1340-1350. shu

Methanol conversion to DME as a blue fuel: The beneficial use of ultrasonic irradiation for the preparation of CuO/H-MOR nanocatalyst

  • Corresponding author: Sameh M. K. Aboul-Fotouh, 
  • Received Date: 14 July 2014
    Available Online: 4 October 2014

  • Methanol conversion to DME was investigated over CuO/H-MOR nanocatalyst prepared by precipitation and/or by precipitation flowed by ultrasonic irradiation methods. BET, XRD, SEM, NH3-TPD and H2-TPR techniques were used to characterize nanocatalysts. The effective ultrasonication factors encountered during carrying out the dehydration of methanol on Cuo/H-MOR zeolite catalysts to produce dimethylether are studied in the present work. These factors include: the type of ultrasonication media, the ultrasonication time, and the fixed weight of the solid catalyst per the volume of the ultrasonication liquid media (Wcatalyst/Vliquid ratio). XRD showed that structure of H-MOR is not damaged even after it is loaded with CuO nanoparticles or with ultrasonication. H2-TPR profiles indicated that reducibility of sonicated CuO/H-MOR nanocatalyst is higher than non-sonicated catalyst. It is found that employing ultrasound energy for 60 min has the highest influence on the surface properties of nanocatalyst and its catalytic performance (activity and stability) of CuO/H-MOR catalyst. Surface morphology (SEM) of the sonicated CuO/H-MOR catalysts have clarified that methanol by itself used as an ultrasonication medium gives the best results concerning the homogeneity of particle sizes compared to the non-sonicated catalyst, where large agglomerates and non-homogeneous clusters appeared. Water used as a sonication medium showed many large agglomerates in addition to some smaller particles resulted in low catalytic activity. The different alcohols and (Wcatalyst/Vliquid) ratio were examined to give precise correlation with the catalytic activity of the sonicated CuO/H-MOR zeolite catalyst. These findings certified that ultrasonication has a deep effect on the surface morphology and hence on the catalytic behavior of the dehydration of methanol to DME. NH3-TPD shows that ultrasound irradiation has enhanced the acidity of CuO/H-MOR catalyst and hence it's catalytic performance for DME formation.
  • 加载中
    1. [1]

      [1] PADDOCK C. Diesel exhaust fumes cause cancer[Z]. WHO, Medical News Today, 2012.

    2. [2]

      [2] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether(DME) over solid-acid catalysts[J]. Catal Commun, 2005, 6(2): 147-152.

    3. [3]

      [3] ZHU Z, LI D K, LIU J, WEI Y J, LIU S H. Investigation on the regulated and unregulated emissions of a DME engine under different injection timing[J]. Appl Therm Eng, 2012, 35: 9-14.

    4. [4]

      [4] LADERA R, FINOCCHIO E, ROJAS S, FIERRO J L G, M. OJEDA M. Supported niobium catalysts for methanol dehydration to dimethyl ether: FTIR studies of acid properties[J]. Catal Today, 2012, 192(1): 136-143.

    5. [5]

      [5] TANG Q, XU H, ZHENG Y, WANG J, LI H, ZHANG J. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41composite molecular sieves[J]. Appl Catal A: Gen, 2012, 413-414: 36-42.

    6. [6]

      [6] KESHAVARZ A R, REZAEI M, YARIPOUR F. Preparation of nanocrystalline [WTBZ]γ[WTB1]-Al2O3 catalyst using different procedures for methanol dehydration to dimethyl ether[J]. J Natural Gas Chem, 2011, 20(3): 334-338.

    7. [7]

      [7] RAOOF F, TAGHIZADEH M, ELIASSI A, YARIPOUR F. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over [WTBZ]γ[WTB1]-alumina[J]. Fuel, 2008, 87(13/14): 2967-2971.

    8. [8]

      [8] KHOM-IN J, PRASERTHDAM P, PANPRANOT J, MEKASUWANDUMRONG O. Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed [WTBZ]γ[WTB1]-and [WTBZ]χ[WTB1]-crystalline phases[J]. Catal Commun, 2008, 9(10): 1955-1958.

    9. [9]

      [9] MOLLAVALI M, YARIPOUR F, MOHAMMADI-JAM S, ATASHI H. Relationship between surface acidity and activity of solid-acid catalysts in vapor phase dehydration of methanol[J]. Fuel Process Technol, 2009, 90(9): 1093-1098.

    10. [10]

      [10] EBEID M F, ALI A, AMIN A, ABOUL-FOTOUH S. Heteropoly acids supported on [WTBZ]α[WTB1]-Al2O3 as solid acid catalysts for methanol transformation[J]. Collect Czech Chem Commun, 1993, 58: 2079-2089.

    11. [11]

      [11] AMIN A, ALI A, ABOUL-FOTOUH S, EBEID E F. Surface studies and nature of active sites of supported heteropolyacids as catalysts in methanol dehydration[J]. Collect Czech Chem Commun, 1994, 59: 820-832.

    12. [12]

      [12] LIU D, YAO C, ZHANG J, FANG D, CHEN D. Catalytic dehydration of methanol to dimethyl ether over modified [WTBZ]γ[WTB1]-Al2O3 catalyst[J]. Fuel, 2011, 90(5): 1738-1742.

    13. [13]

      [13] JIANG S, HWANG J, JIN T, CAI T, CHO W, BAEK Y, PARK S. Dehydration of methanol to dimethyl ether over ZSM-5 Zeolite[J]. Bull Korean Chem Soc, 2004, 25: 185-189.

    14. [14]

      [14] SUN KOU M R, MENDIOROZ S, SALERNO P, MUNOZ V. Catalytic activity of pillared clays in methanol conversion[J]. Appl Catal A: Gen, 2003, 240(1/2): 273-285.

    15. [15]

      [15] LERTJIAMRATN K, PRASERTHDAM P, ARAI M, PANPRANOT J. Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2010, 378(1): 119-123.

    16. [16]

      [16] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts[J]. Catal Commun, 2005, 6(8): 542-549.

    17. [17]

      [17] FEI J, HOU Z, ZHU B, LOU H, ZHENG X. Synthesis of dimethyl ether(DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006, 304: 49-54.

    18. [18]

      [18] FU Y, HONG T, CHEN J, AUROUX A, SHEN J. Surface acidity and the dehydration of methanol to dimethyl ether[J]. Thermochim Acta, 2005, 434(1/2): 22-26.

    19. [19]

      [19] KHANDANN, KAZEMEINI M, AGHAZIARATI M.Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether[J]. Appl Catal A: Gen, 2008, 349(1/2): 6-12.

    20. [20]

      [20] RAMOS F S, FARIAS A M D, BORGES L E P, MONTEIRO J L, FRAGA M A, SOUSA-AGUIAR E F, APPEL L G. Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures[J]. Catal Today, 2005, 101(1): 39-44.

    21. [21]

      [21] XU M, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether(DME) from methanol over solid-acid catalysts[J]. Appl Catal A: Gen, 1997, 149(2): 289-301.

    22. [22]

      [22] WANG A W, WEIGEL S, G. MURARO G. Molecular sieves as catalysts for methanol dehydration in the LPDME-process[R]. Air Products and Chemicals Inc., DE-FC22-95 PC93052, 2002-04-01.

    23. [23]

      [23] KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of gamma-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006, 309(1): 139-143.

    24. [24]

      [24] ABOUL-GHEIT A K, ABOUL-FOTOUH S M. Insight in cyclohexene hydroconversion process using catalysts containing 0.35% Pton amorphous and zeolite supports[J]. J Taiwan Inst Chem Eng, 2012, 43(5): 711-717.

    25. [25]

      [25] ABOUL-FOTOUH S M. Cyclohexene reactivity using catalysts containingPt, Re and PtRe supported on Na- and H- mordenite[J]. J Chin Chem Soc, 2003, 50(6): 1151-1158.

    26. [26]

      [26] ABOUL-FOTOUH S M K,HASSAN M M I. Conversion of methanol on CuO/ H-MOR and CuO/ H-ZSM-5 catalysts[J]. Acta Chim Solv, 2010, 57(4): 872-879.

    27. [27]

      [27] KHANDAN N, KAZEMEINI M, AGHAZIARATI M. Synthesis of dimethyl ether over modified H-mordenitezeolites and bifunctionalcatalysts composed of Cu/ZnO/ZrO2 and modified H-mordenitezeolite in slurry phase[J]. Catal Lett, 2009, 129(1/2): 111-118.

    28. [28]

      [28] ABOUL-FOTOUH S M K, Aboul-Gheit N A K, HASSAN M M I. Conversion of methanol using modified H-MOR zeolite catalysts[J]. Chin J Catal, 2011, 32(3/4): 412-417.

    29. [29]

      [29] KUMAR N, MASLOBOISCHIKOVA O V, KUSTOV L M, HEIKKILA T, SALMI T, MURZIN D Y. Synthesis of Pt modified ZSM-5 and beta zeolite catalysts: Influence of ultrasonic irradiation and preparation methods on physico-chemical and catalytic properties in pentane isomerization[J]. Ultrason Sonochem, 2007, 14(2): 122-130.

    30. [30]

      [30] ZHANG H, ZHU L Q, LI W P, LIU H C. Sonochemicalfabrication and electrochemical performance of electrode materials containing rare earth yttrium[J]. Acta Phys-Chim Sin, 2008, 24(8): 1425-1431.

    31. [31]

      [31] BONRATH W. Ultrasound supported catalysis[J]. Ultrason Sonochem, 2005, 12(1/2): 103-106.

    32. [32]

      [32] SIMONA B, ANTONELLA G. Preparation of highly dispersed CuO catalysts on oxide supports for de-NOx reactions[J]. Ultrason Sonochem, 2003, 10(2): 61-64.

    33. [33]

      [33] DANTSIN G, SUSLICK K S. Sonochemical preparation of a nanostructured bifunctional catalyst[J]. J Am Chem Soc, 2000, 122: 5214-5215.

    34. [34]

      [34] ABOUL-FOTOUH S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of [WTBZ]γ[WTB1]-Al2O3 for methanol dehydration to dimethyl ether[J]. J Fuel Chem Technol, 2013, 41(9): 1077-1084.

    35. [35]

      [35] ABOUL-FOTOUH S M K. Production of dimethylether(DME) as a clean fuelusing sonochemicallyprepared CuO and/or ZnO-modified [WTBZ]γ[WTB1]-alumina catalysts[J]. J Fuel Chem Technol, 2014, 42(3): 350-356.

    36. [36]

      [36] FREEL J. Chemisorption on supported platinum: I. Evaluation of a pulse method[J]. J Catal, 1972, 25(1): 139-148.

    37. [37]

      [37] LII J L, INUI T. Enhancement in methanol synthesis activity of a copper/zinc/aluminum oxide catalyst by ultrasonic treatment during the course of the preparation procedure[J]. Appl Catal A: Gen, 1996, 139(1/2): 87-96.

    38. [38]

      [38] NASIKIN M, A. WAHID A. Effect of ultrasonic during preparation on Cu-based catalyst performance for hydrogenation of CO, to methanol[J]. AJChE, 2005, 5(2): 111-115.

    39. [39]

      [39] CAMPBELL S M, JIANG X Z, HOWE R F. Methanol to hydrocarbons: Spectroscopic studies and the significance of extra-framework aluminum[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 91-108.

    40. [40]

      [40] LIU P, REN T, SUN Y H. Influence of template on Si distribution of SAPO-11 and their performance for n-paraffin isomerization[J]. Microporous Mesoporous Mater, 2008, 114(1/3): 365-372.

    41. [41]

      [41] VENUGOPAL A, PALGUNADI J, DEOG J K, JOO O S, SHIN C H. Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M(M=Ga, La, Y, Zr) and[gamma]-Al2O3: The role of modifier[J]. J Mol Catal A: Chem, 2009, 302(1/2): 20-27.

    42. [42]

      [42] FEI J H, TANG X Y, HUO Z Y, LOU H, ZHENG X M. Effect of copper content on Cu-Mn-Zn/zeolite-Y catalysts for the synthesis of dimethyl ether from syngas[J]. Catal Commun, 2006, 7(11): 827-831.

    43. [43]

      [43] ZHAO Y, CHEN J, ZHANG J. Effects of ZrO2 on the performance of CuO-ZnO-Al2O3/HZSM-5 catalyst for dimethyl ether synthesis from CO2 hydrogenation[J]. J Nat Gas Chem, 2007, 16(4): 389-392.

    44. [44]

      [44] KHOSHBIN R, HAGHIGHI M. Direct syngas to DME as a clean fuel: The beneficial use ofultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J]. Chem Eng Res Des, 2013, 91(6): 1111-1122.

    45. [45]

      [45] SOLYMAN S M, ABOUL-GHEIT N A K, TAWFI F M, SADEK M, AHMED H A. Performance of ultrasonic-Treatednano-zeolites employed in the preparation of dimethyl ether[J]. Egyp J Petro, 2013, 22(1): 91-99.

    46. [46]

      [46] BANDIERA J, NACCACHE C. Kinetics of methanol dehydration on dealuminated H-mordenite: Model with acid and basic active centers[J]. Appl Catal A: Gen, 1991, 69: 139-148.

    47. [47]

      [47] NUNES M H O, SILVA V T, SCHMAL M. The influence of the acid sites on the methylamines synthesis with Cu-HZSM-5 zeolite[J]. Catal Lett, 2004, 97(1/2): 1-8.

    48. [48]

      [48] MOCHIDA I, YASUTAKE A, FUJITSU H. Selective synthesis of dimethylamine(DMA) from methanol and ammonia over zeolites[J]. J Catal, 1983, 82(2): 313-321.

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    8. [8]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    9. [9]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    10. [10]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    11. [11]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    12. [12]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    13. [13]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    14. [14]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    17. [17]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    18. [18]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    19. [19]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    20. [20]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

Metrics
  • PDF Downloads(0)
  • Abstract views(284)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return