Citation: DING Liang, ZHANG Yong-qi, HUANG Jie-jie, WANG Zhi-qing, FANG Yi-tian. Effects of pyrolysis pressure on the properties and gasification reactivities of biomass chars[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1309-1315. shu

Effects of pyrolysis pressure on the properties and gasification reactivities of biomass chars

  • Corresponding author: ZHANG Yong-qi, 
  • Received Date: 18 July 2014
    Available Online: 18 September 2014

    Fund Project: 中国科学院战略性先导科技专项(XDA07050100) (XDA07050100) 中国科学院山西煤炭化学研究所前瞻项目(2011SQZBJ01) (2011SQZBJ01) 国家自然科学基金青年科学基金(21106173) (21106173) 山西省青年科技研究基金(2013021007-2). (2013021007-2)

  • Biomass chars were prepared under different pyrolysis pressures in a pressurized fixed bed reactor. The evolution of chemical composition and physical structure of the biomass chars with the change of pyrolysis pressure were observed by BET, XRD, CHNS elemental analyzer and ICP-AES. The reactivities of biomass chars were evaluated by a thermogravimetric analyzer. The results show that the yields of biomass chars increase with increasing pyrolysis pressure, but reach a plateau above 1.0 MPa. With increasing pyrolysis pressure C content in biomass chars increases, while H content and BET surface area decrease. The degree of graphitization of corn stalk char and sawdust char increases with increasing pyrolysis pressure, while that of rice husk char shows almost no dependence on pyrolysis pressure. The average gasification rates of corn stalk char and sawdust char all decrease with increasing pyrolysis pressure, while pyrolysis pressure has little influence on the gasification rate of rice husk char. Compared the evolution of BET surface area and carbon crystallite structure of biomass chars with biomass char gasification rate, it shows that the difference of carbon crystallite structure of biomass chars, which was brought out by the change of pyrolysis pressure, mainly contributes to the difference of gasification rate of biomass chars prepared under different pyrolysis pressures.
  • 加载中
    1. [1]

      [1] DI BLASI C. Combustion and gasification rates of lignocellulosic chars[J]. Prog Energy Combust, 2009, 35(2): 121-140.

    2. [2]

      [2] CETIN E, GUPTA R, MOGHTADERI B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2005, 84(10): 1328-1334.

    3. [3]

      [3] 岳金方, 应浩, 左春丽. 生物质加压气化技术的研究与应用现状[J]. 可再生能源, 2006, 6(130): 29-32.(YUE Jin-fang, YING Hao, ZUO Chun-li. Research and application status on biomass pressure gasification[J]. Renewable Energy Resources, 2006, 6(130): 29-32.)

    4. [4]

      [4] FERMOSO J, GIL M V, GARCIA S, PEVIDA C, PIS J J, RUBIERA F. Kinetic parameters and reactivity for the steam gasification of coal chars obtained under different pyrolysis temperatures and pressures[J]. Energy Fuels, 2011, 25(8): 3574-3580.

    5. [5]

      [5] ROBERTS D G, HARRIS D J, WALL T F. On the effects of high pressure and heating rate during coal pyrolysis on char gasification reactivity[J]. Energy Fuels, 2003, 17(4): 887-895.

    6. [6]

      [6] LEE C W, JENKINS R G, SCHOBERT H H. Structure and reactivity of char from elevated pressure pyrolysis of Illinois No. 6 bituminous coal[J]. Energy Fuels, 1992, 6(1): 40-47.

    7. [7]

      [7] SUN C L, XIONG Y Q, LIU Q X, ZHANG M Y. Thermogravimetric study of the pyrolysis of two Chinese coals under pressure[J]. Fuel, 1997, 76(7): 639-644.

    8. [8]

      [8] ZENG D, FLETCHER T H. Effects of pressure on coal pyrolysis and char morphology[J]. Energy Fuels, 2005, 19(5): 1828-1838.

    9. [9]

      [9] YANG H P, CHEN H P, JU F D, YAN R, ZHANG S H. Influence of pressure on coal pyrolysis and char gasification[J]. Energy Fuels, 2007, 21(6): 3165-3170.

    10. [10]

      [10] FERMOSO J, GIL M V, BORREGO A G, PEVIDA C, PIS J J, RUBIERA F. Effect of the pressure and temperature of devolatilization on the morphology and steam gasification reactivity of coal chars[J]. Energy Fuels, 2010, 24(10): 5586-5595.

    11. [11]

      [11] OKUMURA Y, HANAOKA T, SAKANISHI K. Effect of pyrolysis conditions on gasification reactivity of woody biomass-derived char[J]. Proc Combust Ins, 2009, 32: 2013-2020.

    12. [12]

      [12] CETIN E, MOGHTADERI B, GUPTA R, WALL T F. Biomass gasification kinetics: Influences of pressure and char structure[J]. Combust Sci Technol, 2005, 177(4): 765-791.

    13. [13]

      [13] CHEN G, YU Q, SJ STR M K. Reactivity of char from pyrolysis of birch wood[J]. J Anal Appl Pyrolysis, 1997, 40-41: 491-499.

    14. [14]

      [14] DEGROOT W F,SHAFIZADEH F. Kinetics of gasification of Douglas Fir and Cottonwood chars by carbon dioxide[J]. Fuel, 1984, 63(2): 210-216.

    15. [15]

      [15] DUPONT C, NOCQUET T, DA COSTA JR J A, VERNE-TOURNON C. Kinetic modelling of steam gasification of various woody biomass chars: Influence of inorganic elements[J]. Bioresour Technol, 2011, 102(20): 9743-9748.

    16. [16]

      [16] ZHANG Y, ASHIZAWA M, KAJITANI S, MIURA K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008, 87(4/5): 475-481.

    17. [17]

      [17] ARENDT P, VAN HEEK K H. Comparative investigations of coal pyrolysis under inert gas and H2 at low and high heating rates and pressures up to 10 MPa[J]. Fuel, 1981, 60(9): 779-787.

    18. [18]

      [18] 鞠付栋, 陈汉平, 杨海平, 沈应强, 张世红. 煤加压热解过程中C和H的转变规律[J]. 煤炭转化, 2009, 32(1): 5-9.(JU Fu-dong, CHEN Han-ping, YANG Hai-ping, SHEN Ying-qiang, ZHANG Shi-hong. Conversion of C and H during coal pressurized pyrolysis[J]. Coal Conversion, 2009, 32(1): 5-9.)

    19. [19]

      [19] CHEN H, LUO Z, YANG H, JU F, ZHANG S. Pressurized pyrolysis gasification of chinese typical coal samples[J]. Energy Fuels, 2008, 22(2): 1136-1141.

    20. [20]

      [20] 范晓雷, 张薇, 周志杰, 王辅臣, 于遵宏. 热解压力及气氛对神府煤焦气化反应活性的影响[J]. 燃料化学学报, 2005, 33(5): 530-533.(FAN Xiao-lei, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Effects of pyrolysis pressure and atmosphere on gasification reactivity of Shenfu char[J]. Journal of Fuel Chemistry and Technology, 2005, 33(5): 530-533.)

    21. [21]

      [21] HUANG Y, YIN X, WU C, WANG C, XIE J, ZHOU Z, MA L, LI H. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnol Adv, 2009, 27(5): 568-572.

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    16. [16]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    17. [17]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(0)
  • Abstract views(732)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return