Citation: YAN Yu-peng, HUANG Ya-ji, WANG Xin-ye, SHAO Zhi-wei, ZHANG Shuai-yi, LIU Chang-qi, CHEN Bo. Control of Pb and Cd emission by kaolin during waste incineration[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1273-1280. shu

Control of Pb and Cd emission by kaolin during waste incineration

  • Corresponding author: HUANG Ya-ji, 
  • Received Date: 24 March 2014
    Available Online: 14 June 2014

    Fund Project: 国家自然科学基金(51006023) (51006023) 高等学校博士学科点专项科研基金(20130092110007)。 (20130092110007)

  • The distribution characteristic of lead and cadmium in PM10 was investigated in a fluidized bed incinerator with kaolin as sorbent to control their emissions. The low pressure impactor (LPI) and atomic absorption spectrophotometer (AAS) were used to detect the size distribution of Pb and Cd in flue gas. The scanning electron microscope/X-ray diffraction/energy disperse spectroscopy (SEM/XRD/EDS) was used to observe the surface morphology and element distribution, respectively. More than 90% of particulate Pb and 85% of particulate Cd in flue gas are enriched in submicron particles. The volatilization of Pb is significantly higher than that of Cd. The reactions of Pb and Cd with kaolin powders can induce the eutectic-melt at high temperature, and its amount increases with the temperature rising. The melted kaolin particles conglutinate to larger particles which can shift the metals in flue gas from the fine to coarse particles. The addition of kaolin can effectively absorb submicron Pb and Cd. The best absorption efficiencies are up to 80% and 50% respectively. For submicron Pb absorption, the optimum incineration temperature is 950 ℃. For submicron Cd absorption, the reaction temperature is much higher; the obvious absorption process occurs until 1 000 ℃.
  • 加载中
    1. [1]

      [1] 陈云嫩, 梁礼明. 城市生活垃圾的资源化处理[J]. 中国资源综合利用, 2003, 5: 11-13. (CHEN Yun-nen, LIANG Li-ming. Resourceful treatment of municipal garbage[J]. China Resources Comprehensive Utilization, 2003, 5: 11-13.)

    2. [2]

      [2] ZHANG H, HE P J, SHAO L M.Fate of heavy metals during municipal solid waste incineration in Shanghai[J]. J Hazard Mater, 2008, 156(1/3): 365-373.

    3. [3]

      [3] JAKOB A, STUCKI S, KUHN P. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash[J]. Environ Sci Technol, 1995, 29(9): 2429-2435.

    4. [4]

      [4] 于洁, 孙路石, 向军, 胡松, 苏胜, 邱建荣. 模拟城市生活垃圾热处理过程中Cd与Pb挥发特性研究[J]. 燃料化学学报, 2012, 40(8): 1019-1024. (YU Jie, SUN Lu-shi, XIANG Jun, HU Song, SU Sheng, QIU Jian-rong. Volatilization of Cd and Pb during thermal treatment of model solid waste in a fluidized bed incinerator[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 1019-1024.)

    5. [5]

      [5] CHEN J C, WEY M Y, OU W Y. Capture of heavy metals by sorbents in incineration flue gas[J]. Sci Total Environ, 1999, 228 (1): 67-77.

    6. [6]

      [6] CHEN J C, WEY M Y. The effect of operating conditions on the capture of metals with limestone during incineration[J]. Environ Int, 1996, 22(6): 743-752.

    7. [7]

      [7] 卢欢亮, 王伟. 改性钙基吸附剂对垃圾焚烧模拟烟气中镉的吸附研究[J]. 环境科学学报, 2005, 25(8): 999-1003. (LU Huan-liang, WANG Wei. Cd vapor adsorption of modified calcium-based adsorbents in simulated MSW flue gases[J]. Acta Scientiae Circumstantia, 2005, 25(8): 999-1003.)

    8. [8]

      [8] 卢欢亮, 王伟, 李艳虹, 陆燕燕, 张晓敏. 非金属矿物对模拟垃圾焚烧烟气中氯化镉的吸附研究[J]. 环境卫生工程, 2005, 13(3): 14-17. (LU Huan-liangg, WANG Wei, LI Yan-hong, LU Yan-yan, ZHANG Xiao-min. Study on CdCl2 adsorption by non-metallic minerals in simulated waste incineration flue gas[J]. Environmental Sanitation Engineering, 2005, 13(3): 14-17.)

    9. [9]

      [9] LINAK W P, SRIVASTAVA R K, WENDT J O L. Sorbent capture of nickel, lead, and cadmium in a laboratory swirl flame incinerator[J]. Combust Flame, 1995, 100(1/2): 241-250.

    10. [10]

      [10] YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. P Combust Inst, 2005, 30(2): 3009-3016.

    11. [11]

      [11] YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009, 7(6): 477-482.

    12. [12]

      [12] 王昕晔, 黄亚继, 仲兆平, 牛淼淼, 孙宇, 张强. 炉内添加剂对垃圾焚烧过程中重金属吸附影响的试验研究[J]. 中国电机工程学报, 2012, 32(32): 15-21. (WANG Xin-ye, HUANG Ya-ji, ZHONG Zhao-ping, NIU Miao-miao, SUN Yu, ZHANG Qiang. Experimental study on the capture of heavy metals by in-furnace additives during MSW incineration[J]. Proceedings of the CSEE, 2012, 32(32): 15-21.)

    13. [13]

      [13] WANG X Y, HUANG Y J, ZHONG Z P. In furnace capture of heavy metals by sorbents during simulated MSW incineration[J]. Adv Mater Res, 2011, 356-360: 1590-1596.

    14. [14]

      [14] GALE T, WENDT J O L. In-furnace capture of cadmium and other semi-volatile metals by sorbents[J]. P Combust Inst, 2005, 30(2): 2999-3007.

    15. [15]

      [15] WENDT J O L, LEE S J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: mechanisms and applications[J]. Fuel, 2010, 89(4): 894-903.

    16. [16]

      [16] GALE T, WENDT J O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combust Flame, 2002, 131(3): 299-307.

    17. [17]

      [17] 陈勇, 张衍国, 李清海, 禚玉群, 陈昌和. 垃圾焚烧中吸附剂对镉进行脱除的热力学平衡研究[J]. 燃烧科学与技术, 2008, 14(3): 239-245. (CHEN Yong, ZHANG Yan-guo, LI Qing-hai, ZHOU Yu-qun, CHEN Chang-he. Equilibrium analysis of sorbents behavior on Cd adsorption under MSW incineration conditions[J]. Journal of Combustion Science and Technology, 2008, 14(3): 239-245.)

    18. [18]

      [18] 陈勇, 张衍国, 李清海, 陈昌和. 垃圾焚烧中氯化物对重金属 Pb迁移转化特性的影响[J]. 燃料化学学报, 2008, 36(3): 354-359. (CHEN Yong, Zhang Yan-guo, Li Qing-hai, Chen Chang-he. Effects of chlorides on Pb partitioning and speciation in a simulated MSW incinerator[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 354-359.)

    19. [19]

      [19] DIRK V, ALFONS B. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces[J]. Environ Sci Technol, 1996, 30(1): 50-56.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    11. [11]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    12. [12]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    13. [13]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    14. [14]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    15. [15]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    16. [16]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    17. [17]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    18. [18]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    19. [19]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    20. [20]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

Metrics
  • PDF Downloads(0)
  • Abstract views(471)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return