Citation: LI Min, WANG Li, CHEN Jiang-yan, JIANG Yan-ling, WANG Wen-jun. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1266-1272. shu

Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal

  • Corresponding author: LI Min, 
  • Received Date: 23 May 2014
    Available Online: 19 August 2014

    Fund Project: 国家自然科学基金(21276146)。 (21276146)

  • Bentonite was modified with ammonium bromide to enhance its adsorption performance for the removal of elemental mercury. The adsorbents were characterized by N2 adsorption/desorption, X-ray diffraction (XRD), elemental analysis, and Fourier transform infrared spectroscopy (FT-IR); the adsorption test was carried out in a laboratory-scale fixed-bed reactor. The results showed that the performance of sodium bentonite in mercury removal is only slightly higher than that of calcium bentonite; however, its performance in mercury removal can be greatly enhanced through the modification with ammonium bromide. The mercury removal efficiency reaches 97.7% over the sodium bentonite modified with ammonium bromide (Br-Ben/Na). High temperature may promote the removal of Hg0 and the mercury removal efficiency remains higher than 90% over the 10% Br-Ben/Na adsorbent for a long time at 140 ℃, suggesting that chemical adsorption played a dominant role in the adsorption process. Through the modification with ammonium bromide, the sodium ions were replaced with the ammonium ions added to the bentonite layers; the specific surface area of the modified bentonite is decreased, whereas the average pore size is increased. During the calcination activation process, the ammonium ions may combine with bentonite within the layers, forming the adsorption active centers, which promotes the reaction between Br- and Hg0 and then enhance the adsorption performance of bentonite in the removal of mercury.
  • 加载中
    1. [1]

      [1] 任建莉, 周劲松, 骆仲泱, 徐璋, 张雪梅. 钙基类吸附剂脱除烟气中气态汞的实验研究[J]. 燃料化学学报, 2006, 34(5): 557-561. (REN Jian-li, ZHOU Jin-song, LUO Zhong-yang, XU Zhang, ZHANG Xue-mei. Ca-based sorbents for mercury vapor removal from flue gas[J]. Journal of Fuel Chemistry and Technology, 2006, 34(5): 557-561.)

    2. [2]

      [2] UNEP. Mercury fate and transport in the global atmosphere: measurement, models and policy implication report[R]. Geneva: UNEP, 2008.

    3. [3]

      [3] 国家环境保护部. GB 13223—2011火电厂大气污染物排放标准[S]. 北京: 中国标准出版社, 2011. (Ministry of Environmental Protection of the People's Republic of China. GB 13223—2011 emission standard of air pollutants for thermal power plants[S]. Beijing: Standard Press of China, 2011.)

    4. [4]

      [4] MABROUK E, ALI S, MOURAD B. Modeling the adsorption of mercury onto natural and aluminium pillared clays[J]. Environ Sci Pollutant Res, 2013, 20(1): 469-479.

    5. [5]

      [5] SDIRI A T, HIGASHI T, JAMOUSSIF. Adsorption of copper and zinc onto natural clay in single and binary systems[J]. Int J Environ Sci Technol, 2014, 11: 1081-1092.

    6. [6]

      [6] SARI A, TUAEN M, CITAK D. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(Ⅱ) from aqueous solution onto Turkish kaolinite clay[J]. J Hazard Mater, 2007, 149(2): 283-291.

    7. [7]

      [7] KWONS, VIDIC R D. Evaluation of two sulfur impregnation methods on activated carbon and bentonite for the production of elemental mercury sorbents[J]. Environ Eng Sci, 2000, 17(6): 303-313.

    8. [8]

      [8] JURNG J, LEE T G, LEE G W. Mercury removal from incineration flue gas by organic and inorganic adsorbents[J]. Chemosphere, 2002, 47(9): 907-913.

    9. [9]

      [9] 丁峰. 矿物吸附剂对燃煤烟气中汞的脱除机制的研究[D]. 武汉: 华中科技大学, 2012. (DING Feng. Mechanism study of elemental mercury removal from coal combustion flue gases by mineral sorbents[D]. Wuhan: Huazhong University of Science and Technology, 2012.)

    10. [10]

      [10] 张安超, 向军, 路好, 孙路石, 郑雯雯. 酸-碘改性壳聚糖-膨润土脱除单质汞特性及机理分析[J]. 中国环境科学, 2013, 33(10): 1758-1764. (ZHANG An-chao, XIANG Jun, LU Hao, ZHENG Wen-wen. Removal of gas-phase elemental mercury by acid-iodine modified chitosan-bentonite adsorbent[J]. China Environmental Science, 2013, 33(10): 1758-1764.)

    11. [11]

      [11] 张安超, 孙路石, 向军, 胡松, 付鹏, 苏胜, 周英彪. 膨润土-壳聚糖及其改性吸附剂脱除燃烧烟气中Hg0的性能研究[J]. 燃料化学学报, 2009, 37(4): 489-495. (ZHANG An-chao, SUN Lu-shi, XIANG Jun, HU Song, FU Peng, SU Sheng, ZHOU Ying-biao. Removal of elemental mercury from coal combustion flue gas by bentonite-chitosan and their modifier[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 489-495.)

    12. [12]

      [12] EREN E, AFSIN B. An investigation of Cu(Ⅱ) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study[J]. J Hazard Master, 2008, 151(2/3): 682-691.

    13. [13]

      [13] 朱纯, 段钰锋, 尹建军, 冒咏秋, 王卉, 韦红旗. 卤化按盐改性生物质稻壳焦的汞吸附特性[J]. 东南大学学报: 自然科学版, 2013, 43(1): 99-106. (ZHU Chun, DUAN Yu-feng, YIN Jian-jun, MAO Yong-qiu, WANG Hui, WEI Hong-qi. Mercury adsorption by rice husk char sorbents modified by ammonium halide[J]. Journal of Southeast University: Natural Science Edition, 2013, 43(1): 99-106.)

    14. [14]

      [14] MEI Z J, SHEN Z M and YUAN T. Removal of vapor-phase elemental mercury by N-doped CuCO4 loaded on activated carbon[J]. Fuel Process Technolgy, 2007(88): 623-629.

    15. [15]

      [15] SJOSTROM S, DURHAM M, BUSTARD C J. Activated carbon injection for mercury control: overview[J]. Fuel, 2010, 89(6): 1320-1322.

    16. [16]

      [16] 张乃娴. 粘土矿物研究方法[M]. 北京: 科学出版社, 1990. (ZHANG Nai-xian. Research methods of the clay mineral[M]. BeiJing: Science Press, 1990.)

    17. [17]

      [17] 姜桂兰, 张培萍. 膨润土加工与应用[M]. 北京: 化学工业出版社, 2005, 69-74. (JIANG Gui-lan, ZHANG Pei-ping. Preparation and application of bentonite[M]. BeiJing: Chemical Industry Press, 2005.)

    18. [18]

      [18] 汪仁庆, 黄德如. 无机和配位化合物的红外和拉曼光谱[M]. 第4版, 北京, 化学工业出版社, 1991. (WANG Ren-qing, HUANG De-ru. Infrared and Roman spectra of inorganic and coordination compounds[M]. 4th ed. BeiJing: Chemical Industry Press, 1991.)

    19. [19]

      [19] 陈勇, 谷锦, 陈鹏, 张静静, 陈超. La, Fe共掺杂TiO2/膨润土的制备及其光催化性能[J]. 功能材料, 2013, 20(44): 3003-3011. (CHEN Yong, GU Jin, CHEN Peng, CHEN Chao. Preparation and properties of lanthanumand iron co-doped TiO2/bentonite composite photocatalyst[J]. Journal of Functional Materials, 2013, 20(44): 3003-3011.)

    20. [20]

      [20] 管俊芳, 狄敬茹, 于吉顺, 陆琦. Zr/Al基柱撑蒙脱石矿物材料的红外光谱研究[J]. 硅酸盐学报, 2005, 33(2): 220-224. (GUAN Jun-Fang, DI Jing-ru, YU Ji-shun, LU Qi. Infrared spectra of Zr/Al-pillared montmorillonite mineral material[J]. Journal of the Chinese Ceramic Society, 2005, 33(2): 220-224.)

    21. [21]

      [21] LEE S S, LEE J Y, KEENER T C. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases[J]. Fuel, 2009, 88(10): 2053-2056.

    22. [22]

      [22] ZENG H C, JIN F, GUO J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel, 2004, 83(1): 143-146.

    23. [23]

      [23] LEE J Y, JU Y, LEE S S. Novel mercury oxidant and sorbent for mercury emissions control from coal-fired power plants[J]. Water, Air, & Soil Pollution Focus, 2008, 8(3/4): 333-341.

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    18. [18]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(0)
  • Abstract views(379)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return