Citation: LIU Jian-jun, YANG Zhong-qing, ZHANG Li. Effect of Ni addition on the catalytic performance of Cu/γ-Al2O3 in the combustion of lean methane containing SO2[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1253-1258. shu

Effect of Ni addition on the catalytic performance of Cu/γ-Al2O3 in the combustion of lean methane containing SO2

  • Corresponding author: ZHANG Li, 
  • Received Date: 29 May 2014
    Available Online: 28 July 2014

    Fund Project: 国家自然科学基金(51206200) (51206200) 中央高校基本科研业务经费(CDJZR12140031)。 (CDJZR12140031)

  • The Cu/γ-Al2O3 catalyst promoted with Ni was prepared by incipient wetness impregnation and used in the catalytic combustion of lean methane (3%) containing SO2 (0.01%) in a fixed bed reactor; the effect of Ni addition on the catalytic activity of Cu/γ-Al2O3 and stability against sulfur poisoning in lean methane combustion was investigated. The results showed that Cu/γ-Al2O3 catalyst is facilely poisoned by SO2 in the feed gas and its resistance against sulfur poisoning can be effectively improved through the addition of Ni as a promoter. The stability of Cu/γ-Al2O3 catalyst is increased with the increase of Ni content; over the Cu/γ-Al2O3 catalyst promoted by 10% Ni, the conversion of CH4 remains above 96% after reaction at 650 ℃ for 10 h. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and NH3 temperature-programmed desorption (NH3-TPD); the results illustrated that NiAl2O4 spinel is formed on the Ni-promoted Cu/γ-Al2O3 catalyst. Upon the formation of NiAl2O4 spinel, the surface Lewis acidity is reduced, and meanwhile, the adsorption of SO2 is weakened and the retention time of CO2 on the surface is reduced, all these may contribute to the high activity and stability against sulfur poisoning of the Ni-promoted Cu/γ-Al2O3 catalyst in lean methane combustion.
  • 加载中
    1. [1]

      [1] GROPPI G, CRISTIANI C, LIETTI L. Effect of ceria on palladium supported catalysts for high temperature combustion of CH4 under lean conditions[J]. Catal Today, 1999, 50(2): 399-412.

    2. [2]

      [2] 周忠良, 季生福, 银凤翔. Pd/CexZr1-xO2/SiO2催化剂的制备及其甲烷催化燃烧性能的研究[J]. 燃料化学学报, 2007, 35(5): 583-588. (ZHOU Zhong-liang, JI Sheng-fu, YIN Feng-xiang. Preparation of Pd/CexZr1-xO2/SiO2 and its catalytic performance in methane combustion[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 583-588.)

    3. [3]

      [3] CHOUDHARY T V, BANERJEE S, CHOUDHARY V R. Catalysts for combustion of methane and lower alkanes[J]. Appl Catal A: Gen, 2002, 234(1): 1-23.

    4. [4]

      [4] 张力, 刘建军, 杨仲卿, 郑世伟. 硫中毒对Cu/γ-Al2O3催化含硫低浓度甲烷燃烧特性的影响[J]. 燃料化学学报, 2014, 42(5): 1-6. (ZHANG Li, LIU Jian-jun, YANG Zhong-qing, ZHENG Shi-wei. The effects of sulfur poisoning on combustion characteristics of low concentration methane with SO2 over Cu/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 1-6.)

    5. [5]

      [5] ORDONEZ S, PAREDES J R, DIEZ F V. Sulphur poisoning of transition metal oxides used as catalysts for methane combustion[J]. Appl Catal A: Gen, 2008, 341(1/2): 174-180.

    6. [6]

      [6] RUI Z, HUANG Y, ZHENG Y, JI H, YU X. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion[J]. J Mol Catal A: Chem, 2013, 372: 128-136.

    7. [7]

      [7] RYU C K, RYOO M W, RYU I S. Catalytic combustion of methane over supported bimetallic Pd catalysts: Effects of Ru or Rh addition[J]. Catal Today, 1999, 47(1/4): 141-147.

    8. [8]

      [8] COLUSSI S, AROSIO F, MONTANARI T. Study of sulfur poisoning on Pd/Al2O3 and Pd/CeO2/Al2O3 methane combustion catalysts[J]. Catal Today, 2010, 155(1): 59-65.

    9. [9]

      [9] OHTSUKA H. The Oxidation of methane at low temperatures over zirconia-supported Pd, Ir and Pt catalysts and deactivation by sulfur poisoning[J]. Catal Lett, 2011, 141(3): 413-419.

    10. [10]

      [10] ZI X, LIU L, XUE B. The durability of alumina supported Pd catalysts for the combusition of methane in the presence of SO2[J]. Catal Today, 2011, 175(1): 223-230.

    11. [11]

      [11] 刘莹, 王胜, 高典楠, 王树东. Ni的引入对Pd/Al2O3催化甲烷燃烧性能的影响[J]. 催化学报, 2012, 3(8): 1354-1359. (LIU Ying, WANG Sheng, GAO Dian-nan, WANG Shu-dong. Effect of Ni addition on methane catalytic combustion performance of Pd/Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2012, 3(8): 1354-1359.)

    12. [12]

      [12] 李建中, 吕功煊. Ni-Nb2O5和Ni-Cu-Nb2O5催化甲烷燃烧活性研究[J]. 分子催化, 2005, 19(3): 188-191. (LI Jian-zhong, LV Gong-xuan. Study of methane catalytic combustion over Ni-Nb2O5 and Ni-Cu-Nb2O5[J]. Journal of Molecular Catalysis, 2005, 19(3): 188-191.)

    13. [13]

      [13] HAPPEL M, LYKHACH Y, TSUD N. Mechanism of sulfur poisoning and storage: Adsorption and reaction of SO2 with stoichiometric and reduced ceria films on Cu(111)[J]. J Phys Chem C, 2011, 115(40): 19872-19882.

    14. [14]

      [14] AAMARINO M, CHIRONE R, LISI L. Cu/γ-Al2O3 catalyst for the combustion of methane in a fluidized bed reactor[J]. Catal Today, 2002, 75: 317-324.

    15. [15]

      [15] ARTIZZU P, GARBOWSKI E, PRIMET M. Catalytic combustion of methane on aluminate-supported copper oxide[J]. Catal today, 1999, 47(1): 83-93.

    16. [16]

      [16] REQUIES J, ALVAREZ-GALVAN M C, BARRIO V L. Palladium-manganese catalysts supported on monolith systems for methane combustion[J]. Appl Catal B: Environ, 2008, 79(2): 122-131.

    17. [17]

      [17] AREAN C O, MENTRUIT M P, LOPEZ A J L. High surface area nickel aluminate spinels prepared by a sol-gel method[J]. Colloids Surf A, 2001, 180(3): 253-258.

    18. [18]

      [18] 甄开吉. 催化作用基础[M]. 3版. 北京: 科学出版社, 2005. (ZHEN Kai-ji. Basis of catalysis[M]. 3rd ed. Beijing: Science Press, 2005.)

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    20. [20]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

Metrics
  • PDF Downloads(0)
  • Abstract views(655)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return