Citation: LIU Ji, WANG Dong-xu, XIAO Xian-bin, CHEN Xu-jiao, QIN Wu, DONG Chang-qing. Effect of calcination temperature on Ni/γ-Al2O3 reduction and catalytic steam reforming of toluene[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1225-1232. shu

Effect of calcination temperature on Ni/γ-Al2O3 reduction and catalytic steam reforming of toluene

  • Corresponding author: XIAO Xian-bin, 
  • Received Date: 11 May 2014
    Available Online: 19 July 2014

    Fund Project: 国家自然科学基金(51206050) (51206050) 教育部高等学校博士学科点专项科研基金(20120036120008)。 (20120036120008)

  • The influence of calcination temperature on Ni/γ-Al2O3 reducing conditions and catalytic steam reforming of toluene was studied. The results indicate that the catalyst calcined at 700 ℃ showed good catalytic performance at reaction temperature of 680 ℃ and maintained a high catalytic activity, stability without pre-reduction and 99% of toluene conversion was obtained under optimum conditions. The catalysts were also characterized by BET, XRD, TG-DTG and other techniques before and after reaction. As the calcination temperature was raised, the interaction between nickel and carrier was gradually enhanced, surface area and total pore volume decreased, and amount of NiAl2O4 in the catalyst increased. These are considered the main reasons for the effect of calcination temperature on the catalyst reduction conditions. Finally, the structure of the catalyst calcined at 700 ℃ is further analyzed using TEM, XPS.
  • 加载中
    1. [1]

      [1] 宫立倩, 陈吉祥, 邱业君, 张继炎. 焙烧温度对甲烷催化部分氧化 Ni/MgO-Al2O3催化剂结构和性能的影响[J]. 燃料化学学报, 2005, 33(2): 224-228. (GONG Li-qian, CHEN Ji-xiang, QIU Ye-jun, ZHANG Ji-yan. Effects of calcinations temperature on structure and catalytic performance of Ni/MgO-Al2O3catalysts for partial oxidation of methane[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 224-228.)

    2. [2]

      [2] 安璐, 董长青, 杨勇平, 何磊, 张俊姣. 负载型镍基催化剂上乙酸蒸汽重整制氢反应研究[J]. 中国电机工程学报, 2009, 29(2): 47-51. (AN Lu, DONG Chang-qing, YANG Yong-ping, HE Lei, ZHANG Jun-jiao. Studies on steam reforming of acetic acid for hydrogen production over nickel-based catalyst[J]. Proceedings of the CSEE, 2009, 29(2): 47-51.)

    3. [3]

      [3] 定明月, 熊伟, 涂军令, 李宇萍, 王铁军, 马隆龙. 焙烧温度对 Ni-Mg 基蜂窝状催化剂生物燃气重整调变性能的影响[J]. 燃料化学学报, 2013, 41(7): 862-867. (DING Ming-yue, XIONG Wei, TU Jun-ling, LI Yu-ping, WANG Tie-jun, MA Long-long. Effect of calcination temperature on Ni-Mg based monolithic catalyst for biomass gas reforming reaction[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 862-867.)

    4. [4]

      [4] 张玉红, 熊国兴, 盛世善, 刘盛林, 杨维慎. NiO/γ-Al2O3催化剂中NiO与γ-Al2O3间的相互作用[J]. 物理化学学报, 1999, 15(8): 735-741. (ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3supporter of NiO/γ- Al2O3catalysts[J]. Acta Physico-Chimica Sinica, 1999, 15(8): 735-741.)

    5. [5]

      [5] 刘春涛, 史鹏飞, 张菊香. 焙烧温度对 Au/Fe2O3选择性氧化富氢气体中CO催化性能的影响[J]. 燃料化学学报, 2004, 32(5): 632-636. (LIU Chun-tao, SHI Peng-fei, ZHANG Ju-xiang. Effect of calcination temperature on CO selective oxidation in H2 rich gas over Au/Fe2O3catalyst[J]. Journal of Fuel Chemistry and Technology, 2004, 32(5): 632-636.)

    6. [6]

      [6] 顾立军, 谢颖, 刘宝生, 陈小平, 王乐夫. 焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂NO还原活性的影响[J]. 燃料化学学报, 2004, 32(2): 235-240. (GU Li-jun, XIE Ying, LIU Bao-sheng, CHEN Xiao-ping, WANG Le-fu. Effect of calcination temperature on C3H6-SCR of No Over CuO/γ-Al2O3 and CeO2-CuO/γ-Al2O3[J]. Journal of Fuel Chemistry and Technology, 2004, 32(2): 235-240.)

    7. [7]

      [7] 李娟, 海航, 闫常峰, 胡蓉蓉, 么志伟, 罗伟民, 郭常青, 李文博. 焙烧温度对二甲醚水蒸气重整制氢Cu/ZnO/Al2O3/Cr2O3+ H-ZSM-5双功能催化剂性能的影响[J]. 燃料化学学报, 2012, 40(10): 1240-1245. (LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1240-1245.)

    8. [8]

      [8] GARCIA L, SALVADOR M, ARAUZO J. Catalytic pyrolysis of biomass: Influence of the catalyst pretreatment on gas yields[J]. J Anal Appl Pyrol, 2001, 58-59: 491-501.

    9. [9]

      [9] TARALAS G, KONTOMINAS M G, KAKATSIOS X. Modeling the thermal destruction of toluene (C7H8) as tar-related species for fuel gas cleanup[J]. Energy Fuels, 2003, 17(2): 329-337.

    10. [10]

      [10] TAO J, ZHAO L Q, DONG C Q. Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CEO2/SBA-15 catalysts[J]. Energies, 2013, 6(7): 3284-3296.

    11. [11]

      [11] ZHANG R Q, WANG H J, HOU X X. Catalytic reforming of toluene as tar model compound: Effect of Ce and Ce-Mg promoter using Ni/olivine catalyst[J]. Chemosphere, 2014, 97: 40-46.

    12. [12]

      [12] SOONGPRASIT K, AHT-ONG D, SRICHAROENCHAIKUL V. Synthesis and catalytic activity of sol-gel derived La-Ce-Ni perovskite mixed oxide on steam reforming of toluene[J]. Curr Appl Phys, 2012, 12(12): S80-S88.

    13. [13]

      [13] 邓存, 梁俊芳, 曾育才. 制备方法对镍催化剂重整活性的影响[J]. 天然气化工, 2002, 27(1): 4-8. (DENG Cun, LIANG Jun-fang, ZENG Yu-cai. Effects of preparation method on the reforming activity of nickel catalysts[J]. Natural Gas Chemical Industry, 2002, 27(1): 4-8.)

    14. [14]

      [14] 黄海燕, 沈志红. 焙烧温度对Ni/γ-Al2O3催化剂性能的影响[J]. 石油大学学报, 1999, 23(6): 67-69. (HUANGHai-yan, SHEN Zhi-hong. Effects on nickel-alumina catalysts of calcination temperature[J]. Journal of the University of Petroleum of China, 1999, 23(6): 67-69.)

    15. [15]

      [15] 周振华, 陈耀强, 龚茂初, 陈耀强. 焙烧温度对NiO/δ-Al2O3催化剂性能的影响[J]. 化学研究与应用, 2000, 12(5): 521-524. (ZHOU Zhen-hua, CHEN Yao-qiang, GONG Mao-chu, CHEN Yao-qiang. Effects on nickel-alumina catalysts of calcination temperature[J]. Chemical Research and Application, 2000, 12(5): 521-524.)

    16. [16]

      [16] 李春义, 余长春, 沈师孔. Ni/Al2O3催化剂上CH4发氧化制合成气反应积炭的原因[J]. 催化学报, 2001, 22(4): 377-382. (LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Studies on the reasons for carbon deposition over Ni/Al2O3catalyst in partial oxidation of CH4 to syngas with tpo technique[J]. Chinese Journal of Catalysis, 2001, 22(4): 377-382.)

    17. [17]

      [17] 徐军科, 李兆静, 汪吉辉, 周伟, 马建新. 甲烷干重整催化剂Ni/Al2O3表面积炭表征与分析[J]. 物理化学学报, 2009, 25(02): 253-260. (XU Jun-ke, LI Zhao-jing, WANG Ji-hui, ZHOU Wei, MA Jian-xin. Characterization and analysis of carbon deposited on the surface ofNi/Al2O3 catalyst for methane dry reforming[J]. Acta Physico-Chimica Sinica, 2009, 25(2): 253-260.)

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(1216)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return