Citation:
OUYANG Xin-ping, HUANG Xiang-zhen, QIU Xue-qing. Liquefaction of wheat straw alkali lignin under microwave irradiation[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(10): 1212-1217.
-
The effects of liquefying agent, catalyst, reaction temperature and time on the yield of bio-oil in microwave assisted liquefaction of wheat straw alkali lignin were investigated. And the liquefaction products were characterized by FT-IR, GC-MS and 1H-NMR. It is found that microwave irradiation greatly shortens liquefaction time with methanol as liquefying agent and ferric sulfate as catalyst, where the yield of bio-oil is up to 55.22% at the relatively low liquefaction temperature of 160 ℃ for 5 min. The structure of residual lignin after liquefaction exhibits very limited variation, indicating that the degraded lignin fragments have lower probability of recondensation, and residual lignin can be reused to improve the utilization rate of lignin. The identified liquefaction products are mainly monophenolic compounds, in which S, G and H type compounds account for 57.72%, 25.28% and 8.98%, respectively. The existence of the signals for β-O-4 and C-C bonds in the 1H-NMR spectra suggests that the bio-oils include a small amount of dimers and oligomers except for monophenolic compounds.
-
-
-
[1]
[1] CUI C, SUN R, ARGYROPOULOS D S. Fractional precipitation of softwood kraft lignin: Isolation of narrow fractions common to a variety of lignins[J]. ACS Sus Chem Eng, 2014, 2(4): 959-968.
-
[2]
[2] PETROCELLI F P, KLEIN M T. Chemical modeling analysis of the yields of single-ring phenolics from lignin liquefaction[J]. Ind Eng Chem Prod Res Dev, 1985, 24(4): 635-641.
-
[3]
[3] HORÁCEK J, HOMOLA F, KUBICKOVÁ I, KUBICKA D. Lignin to liquids over sulfided catalysts[J]. Catal Today, 2012, 179(1): 191-198.
-
[4]
[4] 叶俊, 李广学, 周博涵, 曹从伟, 杨和彦, 李家鸣. ZnCl2催化木质素磺酸盐加氢液化的溶剂效应[J]. 燃料化学学报, 2012, 40(3): 321-325. (YE Jun, LI Guang-xue, ZHOU Bo-han, CAO Cong-wei, YANG He-yan, LI Jia-ming. Solvent effect of lignosulfonate liquefaction by ZnCl2 catalyzed hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 321-325.)
-
[5]
[5] 陈啸, 成有为, 李希. 甲醇降解碱木质素[J]. 化学反应工程与工艺, 2012, 28(2): 129-137. (CHEN Xiao, CHENG You-wei, LI Xi. Degradation of alkali lignin in methanol[J]. Chemical Reaction Engineering and Technology, 2012, 28(2): 129-137.)
-
[6]
[6] VOITL T, ROHR P R. Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol[J]. Ind Eng Chem Res, 2009, 49(2): 520-525.
-
[7]
[7] CHENG S, D'CRUZ I, WANG M, LEITCH M, XU C. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J]. Energy Fuel, 2010, 24(9): 4659-4667.
-
[8]
[8] CHUMPOO J, PRASASSARAKICH P. Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol[J]. Energy Fuel, 2010, 24(3): 2071-2077.
-
[9]
[9] NAGPURKAR L P, CHAUDHARI A R, EKHE J D. Formation of industrially important chemicals from thermal and microwave assisted oxidative degradation of industrial waste lignin[J]. Asian J Chem, 2002, 14(3): 1387-1392.
-
[10]
[10] DONG C, FENG C, LIU Q, SHEN D, XIAO R. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin[J]. Bioresource Technol, 2014, 162: 136-141.
-
[11]
[11] TOLEDANO A, SERRANO L, PINEDA A, ROMERO A A, LUQUE R, LABIDI J. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening[J]. Appl Catal B: Environ, 2014, 145: 43-55.
-
[12]
[12] BARTA K, MATSON T D, FETTIG M L, SCOTT S L, IRETSKII A V, FORD P C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chem, 2010, 12(9): 1640-1647.
-
[13]
[13] OASMAA A, KUOPPALA E, SELIN J F, GUST S, SOLANTAUSTA Y. Fast pyrolysis of forestry residue and pine.4. Improvement of the product quality by solvent addition[J]. Energy Fuel, 2004, 18(5): 1578-1583.
-
[14]
[14] 张朝红, 凌洪洁, 臧树良, 单亚波, 董殿波, 陈中林, 赵哲, 张春华. 硫酸铁改性活性炭催化微波降解甲基对硫磷[J]. 农药, 2007, 46(1): 40-42. (ZHANG Chao-hong, LING Hong-jie, ZANG Shu-liang, SHAN Ya-bo, DONG Dian-bo, CHEN Zhong-lin, ZHAO Zhe, ZHANG Chun-hua. Investigation on microwave degradation of parathion-methyl in the presence of modified active carbon catalyst with ferric sulfate[J]. Agrochemicals, 2007, 46(1): 40-42.)
-
[15]
[15] DERKACHEVA O, SUKHOV D. Investigation of lignins by FTIR spectroscopy[J]. Macromol Symp, 2008, 265(1): 61-68.
-
[16]
[16] CHIRILA O, TOTOLIN M, CAZACU G, DOBROMIR M, VASILE C. Lignin modification with carboxylic acids and butyrolactone under cold plasma conditions[J]. Ind Eng Chem Res, 2013, 52(37): 13264-13271.
-
[17]
[17] 杨东杰, 周海峰, 谢绍朐, 伍晓蕾, 邱学青. 漆酶活化碱木质素的磺甲基化反应活性研究[J]. 高分子学报, 2013, 2(2): 232-240. (YANG Dong-jie, ZHOU Hai-feng, XIE Shao-qu, WU Xiao-lei, QIU Xue-qing. Sulfomethylation reactivity of alkali lignin with laccase modification[J]. Acta Polymerica Sinica, 2013, 2(2): 232-240.)
-
[18]
[18] 陈晓旭, 孙付保, 张建华, 毛忠贵. 麦草木质素在甘油蒸煮过程中结构的变化[J]. 化工进展, 2010, 29(12): 2330-2335. (CHEN Xiao-xu, SUN Fu-bao, ZHANG Jian-hua, MAO Zhong-gui. Configuration variation of wheat straw lignin during cooking process with glycerol[J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2330-2335.)
-
[19]
[19] MULLEN C A, STRAHAN G D, BOATENG A A. Characterization of various fast-pyrolysis bio-oil by NMR spectroscopy[J]. Energy Fuel, 2009, 23(5): 2707-2718.
-
[1]
-
-
-
[1]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[4]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[5]
Liuxie Liu , Jing He , Jiali Du , Shuang Mao , Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108
-
[6]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[9]
Yifan Liu , Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182
-
[10]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[11]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[12]
Xiaojun Wu , Kai Hu , Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052
-
[13]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[14]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[15]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[16]
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
-
[17]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[18]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[19]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[20]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(484)
- HTML views(30)